Analysis and Numerical Approximation of Energy-Variational Solutions to the Ericksen-Leslie Equations

被引:1
作者
Lasarzik, Robert [1 ]
Reiter, Maximilian E. V. [2 ]
机构
[1] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[2] Tech Univ Berlin, Str 17 Juni 135, D-10623 Berlin, Germany
关键词
Existence; liquid crystal; Ericksen-Leslie; energy-variational solutions; numerical approximation; unit-norm constraint; mass-lumping; finite element method; FINITE-ELEMENT APPROXIMATION; MEASURE-VALUED SOLUTIONS; LIQUID-CRYSTAL FLOWS; STATIONARY STOKES; MODEL; EXISTENCE; REGULARITY; SYSTEMS;
D O I
10.1007/s10440-023-00563-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the concept of energy-variational solutions for the Ericksen-Leslie equations in three spatial dimensions. This solution concept is finer than dissipative solutions and satisfies the weak-strong uniqueness property. For a certain choice of the regularity weight, the existence of energy-variational solutions implies the existence of measure-valued solutions and for a different choice, we construct an energy-variational solution with the help of an implementable, structure-inheriting space-time discretization. Computational studies are performed in order to provide some evidence of the applicability of the proposed algorithm.
引用
收藏
页数:44
相关论文
共 52 条
[1]  
Alnaes M.S., 2015, ARCH NUMER SOFTW, V3, DOI [10.11588/ans.2015.100.20553, DOI 10.11588/ANS.2015.100.20553]
[2]  
[Anonymous], 2001, Theoretical numerical analysis, a functional analysis framework
[3]  
[Anonymous], 2008, MATH THEORY FINITE E, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
[4]   Finite element approximation of nematic liquid crystal flows using a saddle-point structure [J].
Badia, Santiago ;
Guillen-Gonzalez, Francisco ;
Vicente Gutierrez-Santacreu, Juan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) :1686-1706
[5]   Numerical analysis for nematic electrolytes [J].
Banas, L'ubomir ;
Lasarzik, Robert ;
Prohl, Andreas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) :2186-2254
[6]   Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow [J].
Becker, Roland ;
Feng, Xiaobing ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :1704-1731
[7]  
Bennett C., 1988, Pure and Applied Mathematics, VVol. 129
[8]  
Brezis H., 2011, Functional Analysis
[9]   A TIME-SPLITTING FINITE-ELEMENT STABLE APPROXIMATION FOR THE ERICKSEN-LESLIE EQUATIONS [J].
Cabrales, R. C. ;
Guillen-Gonzalez, F. ;
Gutierrez-Santacreu, J. V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :B261-B282
[10]   Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta ;
Wu, Hao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (01) :24-57