Reversible Zinc Electrodeposition at-60 °C Using a Deep Eutectic Electrolyte for Low-Temperature Zinc Metal Batteries

被引:15
作者
Hawkins, Brendan E. [1 ]
Schoetz, Theresa [1 ]
Gordon, Leo W. [1 ]
Surabh, K. T. [1 ]
Wang, Jonah [1 ]
Messinger, Robert J. [1 ]
机构
[1] CUNY City Coll, Dept Chem Engn, New York, NY 10031 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
PARTICLE MESH EWALD; LIQUID ELECTROLYTES; LITHIUM BATTERIES; FORCE-FIELD; PARAMETERS; HYBRID;
D O I
10.1021/acs.jpclett.3c00150
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable zinc (Zn) metal batteries are attractive for use as electrochemical energy storage systems on a global scale because of the low cost, high energy density, inherent safety, and strategic resource security of Zn metal. However, at low temperatures, Zn batteries typically suffer from high electrolyte viscosity and unfavorable ion transport properties. Here, we studied reversible Zn electrodeposition in mixtures of 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([EMIm]TFSI) ionic liquid, gamma-butyrolactone (GBL) organic solvent, and Zn(TFSI)2 zinc salt. The electrolyte mixtures enabled reversible Zn electrodeposition at temperatures as low as -60 degrees C. An electrolyte composed of 0.1 M Zn(TFSI)2 in [EMIm]TFSI:GBL with a volume ratio of 1:3 formed a deep eutectic solvent that optimized electrolyte conductivity, viscosity, and the zinc diffusion coefficient. Liquid state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and molecular dynamic (MD) simulations indicate increased formation of contact ion pairs and the reduction of ion aggregates are responsible for the optimal composition.
引用
收藏
页码:2378 / 2386
页数:9
相关论文
共 42 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Extending the low temperature operational limit of double-layer capacitors [J].
Brandon, Erik J. ;
West, William C. ;
Smart, Marshall C. ;
Whitcanack, Larry D. ;
Plett, Gary A. .
JOURNAL OF POWER SOURCES, 2007, 170 (01) :225-232
[3]   Solvation of Zn2+ ion in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids: a molecular dynamics and X-ray absorption study [J].
Busato, Matteo ;
D'Angelo, Paola ;
Melchior, Andrea .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (13) :6958-6969
[4]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[5]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[6]   LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands [J].
Dodda, Leela S. ;
de Vaca, Israel Cabeza ;
Tirado-Rives, Julian ;
Jorgensen, William L. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W331-W336
[7]   Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations [J].
Doherty, Brian ;
Zhong, Xiang ;
Gathiaka, Symon ;
Li, Bin ;
Acevedo, Orlando .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (12) :6131-6145
[8]   Multiscale Studies on Ionic Liquids [J].
Dong, Kun ;
Liu, Xiaomin ;
Dong, Haifeng ;
Zhang, Xiangping ;
Zhang, Suojiang .
CHEMICAL REVIEWS, 2017, 117 (10) :6636-6695
[9]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[10]   Ionic liquid-based electrolytes for "beyond lithium" battery technologies [J].
Giffin, Guinevere A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13378-13389