Optical Solitons and Conservation Laws for the Concatenation Model: Undetermined Coefficients and Multipliers Approach

被引:47
作者
Biswas, Anjan [1 ,2 ,3 ,4 ,5 ]
Vega-Guzman, Jose [6 ]
Kara, Abdul H. [7 ]
Khan, Salam [8 ]
Triki, Houria [9 ]
Gonzalez-Gaxiola, O. [10 ]
Moraru, Luminita [11 ]
Georgescu, Puiu Lucian [11 ]
机构
[1] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[2] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Pretoria, South Africa
[4] Dunarea de Jos Univ Galati, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[5] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[6] Lamar Univ, Dept Math, Beaumont, TX 77710 USA
[7] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[8] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[9] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, POB 12, Annaba 23000, Algeria
[10] Univ Autonoma Metropolitana Cuajimalpa, Appl Math & Syst Dept, Vasco de Quiroga 4871, Mexico City 05348, Mexico
[11] Dunarea de Jos Univ Galati, Fac Sci & Environm, Dept Chem Phys & Environm, 47 Domneasca St, Galati 800008, Romania
关键词
optical solitons; dispersive; gratings; Kudryashov; PAINLEVE ANALYSIS; EQUATION; KINKS;
D O I
10.3390/universe9010015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper retrieves an optical 1-soliton solution to a model that is written as a concatenation of the Lakshmanan-Porsezian-Daniel model and Sasa-Satsuma equation. The method of undetermined coefficients obtains a full spectrum of 1-soliton solutions. The multiplier approach yields the conserved densities, which subsequently lead to the conserved quantities from the bright 1-soliton solution.
引用
收藏
页数:10
相关论文
共 25 条
[1]   Optical solitons for the Lakshmanan-Porsezian-Daniel model by collective variable method [J].
Al Qarni, A. A. ;
Alshaery, A. A. ;
Bakodah, H. O. .
RESULTS IN OPTICS, 2020, 1
[2]   Extended nonlinear Schrodinger equation with higher-order odd and even terms and its rogue wave solutions [J].
Ankiewicz, Adrian ;
Wang, Yan ;
Wabnitz, Stefan ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2014, 89 (01)
[3]   Higher-order integrable evolution equation and its soliton solutions [J].
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2014, 378 (04) :358-361
[4]   Optical bullets with Biswas-Milovic equation having Kerr and parabolic laws of nonlinearity [J].
Bayram, Mustafa .
OPTIK, 2022, 270
[5]   Wave-particle duality of solitons and solitonic analog of the Ramsauer-Townsend effect [J].
Belyaeva, T. L. ;
Serkin, V. N. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (06)
[6]   Kinks in higher-order polynomial models [J].
Blinov, Petr A. ;
Gani, Tatiana V. ;
Malnev, Alexander A. ;
Gani, Vakhid A. ;
Sherstyukov, Vladimir B. .
CHAOS SOLITONS & FRACTALS, 2022, 165
[7]   Deformations of kink tails [J].
Blinov, Petr A. ;
Gani, Tatiana, V ;
Gani, Vakhid A. .
ANNALS OF PHYSICS, 2022, 437
[8]   Superposed hyperbolic kink and pulse solutions of coupled φ4, NLS and mKdV equations [J].
Khare, Avinash ;
Saxena, Avadh .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (22)
[9]  
Kudryashov N.A., 2022, AIP CONF P, V2425
[10]   Painlevé analysis and optical solitons for a concatenated model [J].
Kudryashov N.A. ;
Biswas A. ;
Borodina A.G. ;
Yıldırım Y. ;
Alshehri H.M. .
Optik, 2023, 272