Nature-inspired trapped air cushion surfaces for environmentally sustainable antibiofouling

被引:17
作者
Rawlinson, Joe M. [1 ]
Cox, Harrison J. [1 ]
Hopkins, Grant [2 ]
Cahill, Patrick [2 ]
Badyal, Jas Pal S. [1 ]
机构
[1] Univ Durham, Sci Labs, Dept Chem, Durham DH1 3LE, England
[2] Cawthron Inst, 98 Halifax St East, Nelson, New Zealand
关键词
Nature inspired; Functional surface; Solid -liquid interface; Liquid repellency; Gas layer; Plastron; Bubble; Biofouling; FEATHER STRUCTURE; WATER REPELLENCY; SUPERHYDROPHOBIC SURFACES; PLASMA FLUORINATION; DRAG REDUCTION; WETTABILITY; COATINGS; BEHAVIOR; FILM; HYDROPHOBICITY;
D O I
10.1016/j.colsurfa.2022.130491
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Feathers of seabirds and waterfowl (for example the mallard duck (Anas platyrhynchos)) consist of hierarchical fibrillar structures encapsulated with hydrophobic preen oil. These characteristics afford waterproofing through the entrapment of air pockets, enabling swimming and diving for such bird species. This liquid repellency mechanism for bird feathers is mimicked by surface hydrophobisation of fibrous nonwoven polypropylene textiles to create large volumes of trapped air at the solid-liquid interface (plastron). Higher static water contact angle values correlate to a greater resistance towards water ingress (akin to the behaviour of mallard feathers). In order to extend the trapped gas layer lifetimes, the transportation of air from the water surface to a submerged air bubble by the diving bell spider (Argyroneta aquatica) for respiration is mimicked via short duration (< 1 s) solar-powered air bubble bursts once every 2 h. This combination of ornithological and arachnological inspired approaches yields stable trapped gas layers at the solid-liquid interface which are shown to inhibit biofouling in real-world outdoor wet environments.
引用
收藏
页数:12
相关论文
共 127 条
[1]  
A.Plasma Grill, 1994, ASSISTED ETCHING COL, P216
[2]   How Multilayered Feathers Enhance Underwater Superhydrophobicity [J].
Ahmadi, S. Farzad ;
Umashankar, Viverjita ;
Dean, Zaara ;
Chang, Brian ;
Jung, Sunghwan ;
Boreyko, Jonathan B. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (23) :27567-27574
[3]   Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow [J].
Aljallis, Elias ;
Sarshar, Mohammad Amin ;
Datla, Raju ;
Sikka, Vinod ;
Jones, Andrew ;
Choi, Chang-Hwan .
PHYSICS OF FLUIDS, 2013, 25 (02)
[4]  
[Anonymous], 1964, Advances in Chemistry, DOI [10.1021/ba-1964-0043.ch008, DOI 10.1021/BA-1964-0043.CH008]
[5]  
Apolinario M, 2009, WOODHEAD PUBL MATER, P132, DOI 10.1533/9781845696313.1.132
[6]   Marine antifouling from thin air [J].
Arnott, Jaimys ;
Wu, Alex H. F. ;
Vucko, Matthew J. ;
Lamb, Robert N. .
BIOFOULING, 2014, 30 (09) :1045-1054
[7]   One-dimensional silicone nanofilaments [J].
Artus, Georg R. J. ;
Seeger, Stefan .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2014, 209 :144-162
[8]   Plastron Respiration Using Commercial Fabrics [J].
Atherton, Shaun ;
Brennan, Joseph C. ;
Morris, Robert H. ;
Smith, Joshua D. E. ;
Hamlett, Christopher A. E. ;
McHale, Glen ;
Shirtcliffe, Neil J. ;
Newton, Michael I. .
MATERIALS, 2014, 7 (01) :484-495
[9]   Dry Under Water: Comparative Morphology and Functional Aspects of Air-Retaining Insect Surfaces [J].
Balmert, Alexander ;
Bohn, Holger Florian ;
Ditsche-Kuru, Petra ;
Barthlott, Wilhelm .
JOURNAL OF MORPHOLOGY, 2011, 272 (04) :442-451
[10]   Partitioning heat loss from mallard ducklings swimming on the air-water interface [J].
Banta, MR ;
Lynott, AJ ;
VanSant, MJ ;
Bakken, GS .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2004, 207 (26) :4551-4557