Diffusion-weighted and gadolinium-enhanced dynamic MRI in parotid gland tumors

被引:3
|
作者
Paris, Pauline [1 ,7 ]
Fath, Lea [1 ]
Schultz, Philippe [1 ]
Veillon, Francis [2 ]
Riehm, Sophie [2 ]
Severac, Francois [3 ]
Venkatasamy, Aina [4 ,5 ,6 ]
机构
[1] Hop Univ Strasbourg, Hop Hautepierre, Serv Oto Rhino Laryngol & Chirurg Cerv, 1 Ave Moliere, F-67200 Strasbourg, France
[2] Hop Univ Strasbourg, Hop Hautepierre, Serv Radiol, Ave Moliere, F-67200 Strasbourg, France
[3] Hop Univ Strasbourg, Hop Civil, Grp Methodes Rech Clin GMRC, Strasbourg, France
[4] Inst Hosp Univ Strasbourg, Strasbourg, France
[5] Interface Rech Fondamental & Appl Cancerol, Inserm UMR S 1113, Streinth Lab Stress Response & Innovat Therapies, Strasbourg, France
[6] Univ Freiburg, Med Ctr, Fac Med, Dept Radiol Med Phys, Killianstr 5a, D-79106 Freiburg, Germany
[7] Hop Conception, Serv ORL & Chirurg Cerv Faciale, 147 Blvd Baille, F-13005 Marseille, France
关键词
Parotid gland tumor; Dynamic-enhanced MRI; Diffusion-weighted MRI; Diagnosis; Fine-needle aspiration; FINE-NEEDLE-ASPIRATION; DIAGNOSIS; ACCURACY; CYTOLOGY; SEQUENCES; LESIONS; HEAD;
D O I
10.1007/s00405-022-07590-6
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Purpose To evaluate the value of diffusion-weighted imaging and dynamic contrast-enhanced MRI for the diagnosis of parotid gland tumors. Methods Retrospective review of patients with surgically treated parotid tumors between January 2009 and June 2020, who underwent a preoperative parotid gland MRI including standard morphological sequences, diffusion-weighted echoplanar imaging with apparent diffusion coefficient measurement and T1-weighted gadolinium-enhanced dynamic MRI sequences with Fat Saturation. The lesion was classified between malignant vs benign and precisions regarding its histological type were given when possible. Imaging findings were compared with pathology results. Results Inclusion of 133 patients (mean age: 53 years). Multiparametric MRI had a sensitivity of 90.3%, a specificity of 77.5%, an overall accuracy of 80.5%, a positive predictive value of 54.9% and a negative predictive value of 96.3% to differentiate benign parotid tumor from malignant ones. Specificity (85.5%) and positive predictive value (67.6%) were improved for cases, where anatomical and functional MRI characteristics were conclusive and consistent with clinical findings. Conclusions Combining diffusion-weighted and gadolinium-enhanced dynamic sequences, in addition to morphological ones enables high (> 90%) sensitivity to detect malignant parotid gland tumors. It also gives the possibility to characterize pleomorphic adenomas and Warthin tumors and to avoid fine-needle aspiration in cases of typical imaging presentation and reassuring clinical findings.
引用
收藏
页码:391 / 398
页数:8
相关论文
共 50 条
  • [41] The value of diffusion kurtosis imaging and dynamic contrastenhanced magnetic resonance imaging in the differential diagnosis of parotid gland tumors
    Liu, Zijun
    Wen, Baohong
    Zhang, Zanxia
    Qu, Feifei
    Wu, Yanglei
    Grimm, Robert
    Zhang, Yong
    Cheng, Jingliang
    Zhang, Yan
    GLAND SURGERY, 2024, 13 (07) : 1254 - 1268
  • [42] Diffusion-Weighted MRI of Peritoneal Tumors: Comparison With Conventional MRI and Surgical and Histopathologic Findings-A Feasibility Study
    Low, Russell N.
    Sebrechts, Christopher P.
    Barone, Robert M.
    Muller, Wayne
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (02) : 461 - 470
  • [43] Preoperative detection of hepatic metastases: Comparison of diffusion-weighted, T2-weighted fast spin echo and gadolinium-enhanced MR imaging using surgical and histopathologic findings as standard of reference
    Soyer, Philippe
    Boudiaf, Mourad
    Place, Vinciane
    Sirol, Marc
    Pautrat, Karine
    Vignaud, Alexandre
    Staub, Fabrice
    Tiah, Djamel
    Hamzi, Lounis
    Duchat, Florent
    Fargeaudou, Yann
    Pocard, Marc
    EUROPEAN JOURNAL OF RADIOLOGY, 2011, 80 (02) : 245 - 252
  • [44] Improving diagnosing performance for malignant parotid gland tumors using machine learning with multifeatures based on diffusion-weighted magnetic resonance imaging
    Juan, Chun-Jung
    Huang, Teng-Yi
    Liu, Yi-Jui
    Shen, Wu-Chung
    Wang, Chih-Wei
    Hsu, Kang
    Shin, Nieh
    Chang, Ruey-Feng
    NMR IN BIOMEDICINE, 2022, 35 (03)
  • [45] Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: comparison with dynamic contrast-enhanced and multiparametric MRI
    Naranjo, Isaac Daimiel
    Lo Gullo, Roberto
    Saccarelli, Carolina
    Thakur, Sunitha B.
    Bitencourt, Almir
    Morris, Elizabeth A.
    Jochelson, Maxine S.
    Sevilimedu, Varadan
    Martinez, Danny F.
    Pinker-Domenig, Katja
    EUROPEAN RADIOLOGY, 2021, 31 (01) : 356 - 367
  • [46] Utility of Diffusion-Weighted MRI in Characterization of Adrenal Lesions
    Miller, Frank H.
    Wang, Yi
    McCarthy, Robert J.
    Yaghmai, Vahid
    Merrick, Laura
    Larson, Andrew
    Berggruen, Senta
    Casalino, David D.
    Nikolaidis, Paul
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (02) : W179 - W185
  • [47] Quantitative Diffusion-Weighted MRI of Neuroblastoma
    Abele, Niklas
    Langner, Soenke
    Felbor, Ute
    Lode, Holger
    Hosten, Norbert
    CANCERS, 2023, 15 (07)
  • [48] Effect of Intravenous Gadolinium-DTPA on Diffusion-Weighted Imaging of Brain Tumors: A Short Temporal Interval Assessment
    Li, Xiang
    Qu, Jin-Rong
    Luo, Jun-Peng
    Li, Jing
    Zhang, Hong-Kai
    Shao, Nan-Nan
    Kwok, Keith
    Zhang, Shou-Ning
    Li, Yan-le
    Liu, Cui-Cui
    Zee, Chi-Shing
    Li, Hai-Liang
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 40 (03) : 616 - 621
  • [49] Differentiation of Benign From Malignant Parotid Gland Tumors Using Conventional MRI Based on Radiomics Nomogram
    Qi, Jinbo
    Gao, Ankang
    Ma, Xiaoyue
    Song, Yang
    Zhao, Guohua
    Bai, Jie
    Gao, Eryuan
    Zhao, Kai
    Wen, Baohong
    Zhang, Yong
    Cheng, Jingliang
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [50] Differentiation of follicular carcinomas from adenomas using histogram obtained from diffusion-weighted MRI
    Chung, S. R.
    Lee, J. H.
    Yoon, R. K.
    Sung, T. -Y.
    Song, D. E.
    Pfeuffer, J.
    Kim, I. S.
    CLINICAL RADIOLOGY, 2020, 75 (11) : 878.e13 - 878.e19