Research progress in wide-temperature flexible zinc-air batteries

被引:16
作者
Liu, Qi [1 ]
Shi, Hongtu [2 ]
Han, Tianyu [2 ]
Wang, Lei [2 ]
Fu, Honggang [1 ,2 ]
机构
[1] Harbin Engn Univ, Key Lab Superlight Mat & Surface Technol, Minist Educ Peoples Republ China, Harbin 150080, Peoples R China
[2] Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Minist Educ Peoples Republ China, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexible zinc -air batteries; Wide; -temperature; Gel -polymer electrolytes; Zinc dendrites; DOUBLE-NETWORK HYDROGELS; ZN-AIR; ELECTROLYTE; PERFORMANCE; CHALLENGES;
D O I
10.1016/j.ensm.2024.103255
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible zinc -air batteries (FZABs) have experienced rapid development due to the advantages of high theoretical energy density, wearable and notable safety. Wide -temperature FZABs have been challenged by rapid dehydration of gel -polymer electrolytes (GPEs) at high temperatures and freezing at low temperatures, as well as increased growth of zinc dendrites. Therefore, some studies have focused on constructing wide -temperature working FZAB using high water retention electrolytes while inhibiting the production of zinc dendrites. In this review, we first systematically examine several evaluation indicators for GPEs. Then, the strategies for improving the wide -temperature performance of GPEs are summarized based on four common polymer monomers. Additionally, reasonable strategies for suppressing zinc dendrites are explored. Finally, the future development directions for GPEs in FZABs are proposed. We hope that this review will provide guidance for the construction of wide -temperature and dendrite -free FZABs.
引用
收藏
页数:28
相关论文
共 160 条
[1]   Polyelectrolyte complex membranes as a selective zincate separator for secondary zinc-air battery [J].
Arif, Muhammad Bagus ;
Kheawhom, Soorathep ;
Dubas, Stephan Thierry .
JOURNAL OF ENERGY STORAGE, 2023, 74
[2]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/nmat2448, 10.1038/NMAT2448]
[3]   How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression [J].
Aslam, Muhammad Kashif ;
Niu, Yubin ;
Hussain, Tanveer ;
Tabassum, Hassina ;
Tang, Wenwen ;
Xu, Maowen ;
Ahuja, Rajeev .
NANO ENERGY, 2021, 86
[4]   Innovative zinc-based batteries [J].
Borchers, Niklas ;
Clark, Simon ;
Horstmann, Birger ;
Jayasayee, Kaushik ;
Juel, Mari ;
Stevens, Philippe .
JOURNAL OF POWER SOURCES, 2021, 484
[5]   Anode corrosion in aqueous Zn metal batteries [J].
Cai, Zhao ;
Wang, Jindi ;
Sun, Yongming .
ESCIENCE, 2023, 3 (01)
[6]   Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Zhang, Xinyu ;
Zeng, Zhiyuan ;
Qin, Jiaqian ;
Huang, Yunhui .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :499-528
[7]   Rational Fabrication of Anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement [J].
Chen, Fan ;
Zhou, Dan ;
Wang, Jiahui ;
Li, Tianzhen ;
Zhou, Xiaohu ;
Gan, Tiansheng ;
Handschuh-Wang, Stephan ;
Zhou, Xuechang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (22) :6568-6571
[8]   Ultra-Strong and Proton Conductive Aqua-Based Adhesives from Facile Blending of Polyvinyl Alcohol and Tungsten Oxide Clusters [J].
Chen, Jiadong ;
Dong, Zhenchuan ;
Li, Mu ;
Li, Xinpei ;
Chen, Kun ;
Yin, Panchao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (33)
[9]   Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries [J].
Chen, Minfeng ;
Chen, Jizhang ;
Zhou, Weijun ;
Han, Xiang ;
Yao, Yagang ;
Wong, Ching-Ping .
ADVANCED MATERIALS, 2021, 33 (09)
[10]   Electrochemical energy storage devices working in extreme conditions [J].
Chen, Mingzhe ;
Zhang, Yanyan ;
Xing, Guichuan ;
Chou, Shu-Lei ;
Tang, Yuxin .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) :3323-3351