Multistability of elasto-inertial two-dimensional channel flow

被引:10
作者
Beneitez, Miguel [1 ]
Page, Jacob [2 ]
Dubief, Yves [3 ]
Kerswell, Rich R. [1 ]
机构
[1] Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[3] Univ Vermont, Dept Mech Engn, Burlington, VT 05405 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
transition to turbulence; viscoelasticity; DRAG REDUCTION; PIPE-FLOW; TRANSITION; INSTABILITIES; TURBULENT; STABILITY; BOUNDARY; ONSET;
D O I
10.1017/jfm.2024.50
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Elasto-inertial turbulence (EIT) is a recently discovered two-dimensional chaotic flow state observed in dilute polymer solutions. Two possibilities are currently hypothesized to be linked to the dynamical origins of EIT: (i) viscoelastic Tollmien-Schlichting waves and (ii) a centre-mode instability. The nonlinear evolution of the centre mode leads to a travelling wave with an 'arrowhead' structure in the polymer conformation, a structure also observed instantaneously in simulations of EIT. In this work we conduct a suite of two-dimensional direct numerical simulations spanning a wide range of polymeric flow parameters to examine the possible dynamical connection between the arrowhead and EIT. Our calculations reveal (up to) four coexistent attractors: the laminar state and a steady arrowhead regime (SAR), along with EIT and a 'chaotic arrowhead regime' (CAR). The SAR is stable for all parameters considered here, while the final pair of (chaotic) flow states are visually very similar and can be distinguished only by the presence of a weak polymer arrowhead structure in the CAR regime. Analysis of energy transfers between the flow and the polymer indicates that both chaotic regimes are maintained by an identical near-wall mechanism and that the weak arrowhead does not play a role. Our results suggest that the arrowhead is a benign flow structure that is disconnected from the self-sustaining mechanics of EIT.
引用
收藏
页数:18
相关论文
共 53 条
[1]   Matrix-Free Methods for the Stability and Control of Boundary Layers [J].
Bagheri, Shervin ;
Akervik, Espen ;
Brandt, Luca ;
Henningson, Dan S. .
AIAA JOURNAL, 2009, 47 (05) :1057-1068
[2]   Polymer diffusive instability leading to elastic turbulence in plane Couette flow [J].
Beneitez, Miguel ;
Page, Jacob ;
Kerswell, Rich R. .
PHYSICAL REVIEW FLUIDS, 2023, 8 (10)
[3]   Dedalus: A flexible framework for numerical simulations with spectral methods [J].
Burns, Keaton J. ;
Vasil, Geoffrey M. ;
Oishi, Jeffrey S. ;
Lecoanet, Daniel ;
Brown, Benjamin P. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[4]   Finite-amplitude elastic waves in viscoelastic channel flow from large to zero Reynolds number [J].
Buza, Gergely ;
Beneitez, Miguel ;
Page, Jacob ;
Kerswell, Rich R. .
JOURNAL OF FLUID MECHANICS, 2022, 951
[5]   Weakly nonlinear analysis of the viscoelastic instability in channel flow for finite and vanishing Reynolds numbers [J].
Buza, Gergely ;
Page, Jacob ;
Kerswell, Rich R. .
JOURNAL OF FLUID MECHANICS, 2022, 940
[6]   Onset of transition in the flow of polymer solutions through microtubes [J].
Chandra, Bidhan ;
Shankar, V. ;
Das, Debopam .
JOURNAL OF FLUID MECHANICS, 2018, 844 :1052-1083
[7]   Experimental observation of the origin and structure of elastoinertial turbulence [J].
Choueiri, George H. ;
Lopez, Jose M. ;
Varshney, Atul ;
Sankar, Sarath ;
Hof, Bjoern .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (45)
[8]   Exceeding the Asymptotic Limit of Polymer Drag Reduction [J].
Choueiri, George H. ;
Lopez, Jose M. ;
Hof, Bjoern .
PHYSICAL REVIEW LETTERS, 2018, 120 (12)
[9]   Perspectives on viscoelastic flow instabilities and elastic turbulence [J].
Datta, Sujit S. ;
Ardekani, Arezoo M. ;
Arratia, Paulo E. ;
Beris, Antony N. ;
Bischofberger, Irmgard ;
McKinley, Gareth H. ;
Eggers, Jens G. ;
Lopez-Aguilar, J. Esteban ;
Fielding, Suzanne M. ;
Frishman, Anna ;
Graham, Michael D. ;
Guasto, Jeffrey S. ;
Haward, Simon J. ;
Shen, Amy Q. ;
Hormozi, Sarah ;
Morozov, Alexander ;
Poole, Robert J. ;
Shankar, V. ;
Shaqfeh, Eric S. G. ;
Stark, Holger ;
Steinberg, Victor ;
Subramanian, Ganesh ;
Stone, Howard A. .
PHYSICAL REVIEW FLUIDS, 2022, 7 (08)
[10]   Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids [J].
Draad, AA ;
Kuiken, GDC ;
Nieuwstadt, FTM .
JOURNAL OF FLUID MECHANICS, 1998, 377 :267-312