3D Bioprinted Xanthan Hydrogels with Dual Antioxidant and Chondrogenic Functions for Post-traumatic Cartilage Regeneration

被引:4
作者
Chen, Yuting [1 ,2 ]
Le, Yiguan [2 ,3 ]
Yang, Junxu [1 ,4 ]
Yang, Yifeng [1 ,2 ]
Feng, Xianjing [1 ,2 ]
Cai, Jihong [1 ,2 ]
Shang, Yifeng [1 ,2 ]
Sugiarto, Sigit [5 ,6 ]
Wei, Qingjun [1 ,4 ]
Kai, Dan [5 ,6 ]
Zheng, Li [1 ,2 ,7 ]
Zhao, Jinmin [1 ,2 ,4 ,7 ]
机构
[1] Guangxi Med Univ, Affiliated Hosp 1, Guangxi Engn Ctr Biomed Mat Tissue & Organ Regener, Nanning 530021, Peoples R China
[2] Guangxi Med Univ, Affiliated Hosp 1, Collaborat Innovat Ctr Regenerat Med & Med BioReso, Nanning 530021, Peoples R China
[3] Nanchang Univ, Affiliated Hosp 2, Dept Gastrointestinal Surg, Nanchang 330008, Peoples R China
[4] Guangxi Med Univ, Affiliated Hosp 1, Dept Orthopaed Trauma & Hand Surg, Nanning 530021, Peoples R China
[5] ASTAR, Inst Sustainabil Chem Energy & Environm ISCE2, Singapore 138634, Singapore
[6] ASTAR, Inst Mat Res & Engn IMRE, Singapore 138634, Singapore
[7] Guangxi Med Univ, Affiliated Hosp 1, Guangxi Key Lab Regenerat Med, Nanning 530021, Peoples R China
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2024年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
polysaccharide; biomaterials; photo-cross-linking; 3D printing; ROS; tissue engineering; GUM; ENHANCEMENT; ALGINATE; COLLAGEN; CELLS; ICRS;
D O I
10.1021/acsbiomaterials.3c01636
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Intra-articular trauma typically initiates the overgeneration of reactive oxidative species (ROS), leading to post-traumatic osteoarthritis and cartilage degeneration. Xanthan gum (XG), a branched polysaccharide, has shown its potential in many biomedical fields, but some of its inherent properties, including undesirable viscosity and poor mechanical stability, limit its application in 3D printed scaffolds for cartilage regeneration. In this project, we developed 3D bioprinted XG hydrogels by modifying XG with methacrylic (MA) groups for post-traumatic cartilage therapy. Our results demonstrated that the chemical modification optimized the viscoelasticity of the bioink, improved printability, and enhanced the mechanical properties of the resulting scaffolds. The XG hydrogels also exhibit decent ROS scavenging capacities to protect stem cells from oxidative stress. Furthermore, XGMA(H) (5% MA substitution) exhibited superior chondrogenic potential in vitro and promoted cartilage regeneration in vivo. These dual-functional XGMA hydrogels may provide a new opportunity for cartilage tissue engineering.
引用
收藏
页码:1661 / 1675
页数:15
相关论文
共 41 条
  • [21] 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels
    Leppiniemi, Jenni
    Lahtinen, Panu
    Paajanen, Antti
    Mahlberg, Riitta
    Metsa-Kortelainen, Sini
    Pinornaa, Tatu
    Pajari, Heikki
    Vikholm-Lundin, Inger
    Pursula, Pekka
    Hytonen, Vesa P.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21959 - 21970
  • [22] Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding
    Li, Huijun
    Tan, Yu Jun
    Liu, Sijun
    Li, Lin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) : 11164 - 11174
  • [23] A New Histology Scoring System for the Assessment of the Quality of Human Cartilage Repair: ICRS II
    Mainil-Varlet, Pierre
    Van Damme, Boudewijn
    Nesic, Dobrila
    Knutsen, Gunnar
    Kandel, Rita
    Roberts, Sally
    [J]. AMERICAN JOURNAL OF SPORTS MEDICINE, 2010, 38 (05) : 880 - 890
  • [24] Influence of hydroxyl substitution on flavanone antioxidants properties
    Masek, Anna
    Chrzescijanska, Ewa
    Latos, Malgorzata
    Zaborski, Marian
    [J]. FOOD CHEMISTRY, 2017, 215 : 501 - 507
  • [25] Adipose tissue-derived stem cells in combination with xanthan gum attenuate osteoarthritis progression in an experimental rat model
    Mei, Li
    Shen, Bojiang
    Xue, Jiajun
    Liu, Shaoying
    Ma, Aibin
    Liu, Fuyan
    Shao, Huarong
    Chen, Jianying
    Chen, Qixin
    Liu, Fei
    Ying, Yong
    Ling, Peixue
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 494 (1-2) : 285 - 291
  • [26] Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials
    Montalbano, Giorgia
    Fiorilli, Sonia
    Caneschi, Andrea
    Vitale-Brovarone, Chiara
    [J]. MATERIALS, 2018, 11 (05)
  • [27] Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry
    Nerger, Bryan A.
    Brun, P. -T.
    Nelson, Celeste M.
    [J]. SOFT MATTER, 2019, 15 (28) : 5728 - 5738
  • [28] Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
    Ouyang, Liliang
    Yao, Rui
    Zhao, Yu
    Sun, Wei
    [J]. BIOFABRICATION, 2016, 8 (03)
  • [29] Molecular Design and Operational Stability: Toward Stable 3D/2D Perovskite Interlayers
    Paek, Sanghyun
    Roldan-Carmona, Cristina
    Cho, Kyung Taek
    Franckevicius, Marius
    Kim, Hobeom
    Kanda, Hiroyuke
    Drigo, Nikita
    Lin, Kun-Han
    Pei, Mingyuan
    Gegevicius, Rokas
    Yun, Hyung Joong
    Yang, Hoichang
    Schouwink, Pascal A.
    Corminboeuf, Clemence
    Asiri, Abdullah M.
    Nazeeruddin, Mohammad Khaja
    [J]. ADVANCED SCIENCE, 2020, 7 (19)
  • [30] Strength-tunable printing of xanthan gum hydrogel via enzymatic polymerization and amide bioconjugation
    Pan, Hui
    Zheng, Bolin
    Shen, Hongdou
    Qi, Meiyuan
    Shang, Yinghui
    Wu, Chu
    Zhu, Rongrong
    Cheng, Liming
    Wang, Qigang
    [J]. CHEMICAL COMMUNICATIONS, 2020, 56 (23) : 3457 - 3460