Electromagnetic gyrokinetic instabilities in STEP

被引:14
作者
Kennedy, D. [1 ]
Giacomin, M. [2 ,3 ]
Casson, F. J. [1 ]
Dickinson, D. [2 ]
Hornsby, W. A. [1 ]
Patel, B. S. [1 ]
Roach, C. M. [1 ]
机构
[1] Culham Ctr Fus Energy, Abingdon OX14 3DB, England
[2] Univ York, York Plasma Inst, York YO10 5DD, England
[3] Univ Padua, Dipartimento Fis G Galilei, Padua, Italy
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
gyrokinetics; kinetic ballooning modes; microtearing modes; spherical tokamaks; high-beta; STEP; ASPECT-RATIO; TRANSPORT; CONFINEMENT; TURBULENCE; STABILITY; GRADIENT;
D O I
10.1088/1741-4326/ad08e7
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present herein the results of a linear gyrokinetic analysis of electromagnetic microinstabilites in the conceptual high -beta, reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production, https://step.ukaea.uk. We examine a range of flux surfaces between the deep core and the pedestal top for two candidate flat-top operating points of the prototype device. Local linear gyrokinetic analysis is performed to determine the type of microinstabilities that arise under these reactor-relevant conditions. We find that the equilibria are dominated at ion binormal scales by a hybrid version of the kinetic ballooning mode (KBM) instability that has significant linear drive contributions from the ion temperature gradient and from trapped electrons, while collisional microtearing modes (MTMs) are sub-dominantly also unstable at similar binormal scales. The hybrid-KBM and MTM exhibit very different radial scales. We study the sensitivity of these instabilities to physics parameters, and discuss potential mechanisms for mitigating them. The results of this investigation are compared to a small set of similar conceptual reactor designs in the literature. A detailed benchmark of the linear results is performed using three gyrokinetic codes; alongside extensive resolution testing and sensitivity to numerical parameters providing confidence in the results of our calculations, and paving the way for detailed nonlinear studies in a companion article.
引用
收藏
页数:26
相关论文
共 51 条
  • [1] Influence of magnetic configuration properties on kinetic ballooning modes in W7-X
    Aleynikova, K.
    Zocco, A.
    Geiger, J.
    [J]. JOURNAL OF PLASMA PHYSICS, 2022, 88 (04)
  • [2] Kinetic ballooning modes in tokamaks and stellarators
    Aleynikova, K.
    Zocco, A.
    Xanthopoulos, P.
    Helander, P.
    Nuehrenberg, C.
    [J]. JOURNAL OF PLASMA PHYSICS, 2018, 84 (06)
  • [3] KINETIC-EQUATIONS FOR LOW-FREQUENCY INSTABILITIES IN INHOMOGENEOUS PLASMAS
    ANTONSEN, TM
    LANE, B
    [J]. PHYSICS OF FLUIDS, 1980, 23 (06) : 1205 - 1214
  • [4] Micro-tearing modes in the mega ampere spherical tokamak
    Applegate, D. J.
    Roach, C. M.
    Connor, J. W.
    Cowley, S. C.
    Dorland, W.
    Hastie, J.
    Joiner, N.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (08) : 1113 - 1128
  • [5] Microstability in a "MAST-like" high confinement mode spherical tokamak equilibrium
    Applegate, DJ
    Roach, CM
    Cowley, SC
    Dorland, WD
    Joiner, N
    Akers, RJ
    Conway, NJ
    Field, AR
    Patel, A
    Valovic, M
    Walsh, MJ
    [J]. PHYSICS OF PLASMAS, 2004, 11 (11) : 5085 - 5094
  • [6] Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests
    Barnes, M.
    Abel, I. G.
    Dorland, W.
    Ernst, D. R.
    Hammett, G. W.
    Ricci, P.
    Rogers, B. N.
    Schekochihin, A. A.
    Tatsuno, T.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (07)
  • [7] Barnes Michael, 2022, Zenodo
  • [8] Fully electromagnetic gyrokinetic eigenmode analysis of high-beta shaped plasmas
    Belli, E. A.
    Candy, J.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (11)
  • [9] Stabilizing impact of high gradient of β on microturbulence
    Bourdelle, C
    Dorland, W
    Garbet, X
    Hammett, GW
    Kotschenreuther, M
    Rewoldt, G
    Synakowski, EJ
    [J]. PHYSICS OF PLASMAS, 2003, 10 (07) : 2881 - 2887
  • [10] Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall
    Bowman, C.
    Dickinson, D.
    Horvath, L.
    Lunniss, A. E.
    Wilson, H. R.
    Cziegler, I.
    Frassinetti, L.
    Gibson, K.
    Kirk, A.
    Lipschultz, B.
    Maggi, C. F.
    Roach, C. M.
    Saarelma, S.
    Snyder, P. B.
    Thornton, A.
    Wynn, A.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    [J]. NUCLEAR FUSION, 2018, 58 (01)