Observation of bulk quadrupole in topological heat transport

被引:30
作者
Xu, Guoqiang [1 ]
Zhou, Xue [2 ]
Yang, Shuihua [1 ]
Wu, Jing [3 ,4 ]
Qiu, Cheng-Wei [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[2] Chongqing Technol & Business Univ, Sch Comp Sci & Informat Engn, Chongqing 400067, Peoples R China
[3] Agcy Sci Technol & Res, Inst Mat Res & Engn, Singapore, Singapore
[4] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
PARITY-TIME SYMMETRY;
D O I
10.1038/s41467-023-39117-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantized bulk quadrupole moment has so far revealed a non-trivial boundary state with lower-dimensional topological edge states and in-gap zero-dimensional corner modes. In contrast to photonic implementations, state-of-the-art strategies for topological thermal metamaterials struggle to achieve such higher-order hierarchical features. This is due to the absence of quantized bulk quadrupole moments in thermal diffusion fundamentally prohibiting possible band topology expansions. Here, we report a recipe for generating quantized bulk quadrupole moments in fluid heat transport and observe the quadrupole topological phases in non-Hermitian thermal systems. Our experiments show that both the real- and imaginary-valued bands exhibit the hierarchical features of bulk, gapped edge and in-gap corner states-in stark contrast to the higher-order states observed only on real-valued bands in classical wave fields. Our findings open up unique possibilities for diffusive metamaterial engineering and establish a playground for multipolar topological physics. Topological transport in thermal diffusion is governed by physical principles that are distinct from those encountered in solid-state or photonic topological systems. Here, the authors demonstrate an experimental strategy for engineering topological thermal phases with bulk, edge and corner modes.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Robust wireless power transfer using a nonlinear parity-time-symmetric circuit [J].
Assawaworrarit, Sid ;
Yu, Xiaofang ;
Fan, Shanhui .
NATURE, 2017, 546 (7658) :387-+
[2]   Colloquium: Topological band theory [J].
Bansil, A. ;
Lin, Hsin ;
Das, Tanmoy .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[3]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[4]   Fractal photonic topological insulators [J].
Biesenthal, Tobias ;
Maczewsky, Lukas J. ;
Yang, Zhaoju ;
Kremer, Mark ;
Segev, Mordechai ;
Szameit, Alexander ;
Heinrich, Matthias .
SCIENCE, 2022, 376 (6597) :1114-+
[5]   Experimental realization of a Weyl exceptional ring [J].
Cerjan, Alexander ;
Huang, Sheng ;
Wang, Mohan ;
Chen, Kevin P. ;
Chong, Yidong ;
Rechtsman, Mikael C. .
NATURE PHOTONICS, 2019, 13 (09) :623-+
[6]   Highlighting photonics: looking into the next decade [J].
Chen, Zhigang ;
Segev, Mordechai .
ELIGHT, 2021, 1 (01)
[7]   Classification of topological quantum matter with symmetries [J].
Chiu, Ching-Kai ;
Teo, Jeffrey C. Y. ;
Schnyder, Andreas P. ;
Ryu, Shinsei .
REVIEWS OF MODERN PHYSICS, 2016, 88 (03)
[8]   Non-Hermitian photonics based on parity-time symmetry [J].
Feng, Liang ;
El-Ganainy, Ramy ;
Ge, Li .
NATURE PHOTONICS, 2017, 11 (12) :752-762
[9]   Single-mode laser by parity-time symmetry breaking [J].
Feng, Liang ;
Wong, Zi Jing ;
Ma, Ren-Min ;
Wang, Yuan ;
Zhang, Xiang .
SCIENCE, 2014, 346 (6212) :972-975
[10]   Optical soliton formation controlled by angle twisting in photonic moire lattices [J].
Fu, Qidong ;
Wang, Peng ;
Huang, Changming ;
Kartashov, Yaroslav V. ;
Torner, Lluis ;
Konotop, Vladimir V. ;
Ye, Fangwei .
NATURE PHOTONICS, 2020, 14 (11) :663-+