Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network

被引:15
作者
Han, Yunlong [1 ]
Li, Conghui [2 ]
Zheng, Linfeng [3 ]
Lei, Gang [1 ]
Li, Li [1 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[2] Zibo Vocat Inst, Zibo 255314, Peoples R China
[3] Jinan Univ, Inst Rail Transportat, Zhuhai 510632, Peoples R China
关键词
Li-ion battery; remaining useful life; transformer; residual learning; STATE; HEALTH; CELL;
D O I
10.3390/en16176328
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, we introduce a novel denoising transformer-based neural network (DTNN) model for predicting the remaining useful life (RUL) of lithium-ion batteries. The proposed DTNN model significantly outperforms traditional machine learning models and other deep learning architectures in terms of accuracy and reliability. Specifically, the DTNN achieved an R2 value of 0.991, a mean absolute percentage error (MAPE) of 0.632%, and an absolute RUL error of 3.2, which are superior to other models such as Random Forest (RF), Decision Trees (DT), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Dual-LSTM, and DeTransformer. These results highlight the efficacy of the DTNN model in providing precise and reliable predictions for battery RUL, making it a promising tool for battery management systems in various applications.
引用
收藏
页数:16
相关论文
共 42 条
[1]   Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study [J].
Alkesaiberi, Abdulelah ;
Harrou, Fouzi ;
Sun, Ying .
ENERGIES, 2022, 15 (07)
[2]   Gated recurrent unit least-squares generative adversarial network for battery cycle life prediction [J].
Ardeshiri, Reza Rouhi ;
Razavi-Far, Roozbeh ;
Li, Tao ;
Wang, Xu ;
Ma, Chengbin ;
Liu, Ming .
MEASUREMENT, 2022, 196
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J].
Barre, Anthony ;
Deguilhem, Benjamin ;
Grolleau, Sebastien ;
Gerard, Mathias ;
Suard, Frederic ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2013, 241 :680-689
[5]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[6]   Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries [J].
Burgos-Mellado, Claudio ;
Orchard, Marcos E. ;
Kazerani, Mehrdad ;
Cardenas, Roberto ;
Saez, Doris .
APPLIED ENERGY, 2016, 161 :349-363
[7]   Data-driven ensemble learning approach for optimal design of cantilever soldier pile retaining walls [J].
Cakiroglu, Celal ;
Islam, Kamrul ;
Bekdas, Gebrail ;
Nehdi, Moncef L. .
STRUCTURES, 2023, 51 :1268-1280
[8]   Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets [J].
Cha, Gi-Wook ;
Moon, Hyeun Jun ;
Kim, Young-Min ;
Hong, Won-Hwa ;
Hwang, Jung-Ha ;
Park, Won-Jun ;
Kim, Young-Chan .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (19) :1-15
[9]   Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries [J].
Chen, Daoquan ;
Hong, Weicong ;
Zhou, Xiuze .
IEEE ACCESS, 2022, 10 :19621-19628
[10]   Li-Ion Battery Performance Degradation Modeling for the Optimal Design and Energy Management of Electrified Propulsion Systems [J].
Chen, Li ;
Tong, Yuqi ;
Dong, Zuomin .
ENERGIES, 2020, 13 (07)