Additive manufacturing of fine-grain fully lamellar titanium aluminide alloys

被引:10
作者
Zhu, Yichao [1 ]
Wang, Zefeng [1 ]
Yu, Bing [1 ]
Li, Guochao [2 ]
Xue, Yunfei [1 ]
Liang, Yao-Jian [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Beiye Funct Mat Corp, 1 Xiaoying East Rd, Beijing 100192, Peoples R China
关键词
Additive manufacturing; Titanium aluminides; Grain refinement; Solid state phase transformation; Mechanical properties; HEAT-TREATMENT; TIAL ALLOY; MICROSTRUCTURAL DEVELOPMENT; DIRECTIONAL SOLIDIFICATION; SCANNING SPEED; HIGH-STRENGTH; LOW-CARBON; HIGH-NB; LASER; REFINEMENT;
D O I
10.1016/j.matdes.2023.111989
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM), or 3D printing, has attracted increased attention in producing metallic parts with complex geometries, but it has proved difficult to prepare equiaxed fine-grain parts because the high thermal gradient in solidification commonly conduces the formation of coarse columnar grains. This work shows a solution to fine-grain titanium aluminide (TiAl) alloys by designing a high-frequency thermal cycling to control the solid-state phase transformations in layer-by-layer AM. After solidification, the specially-designed high-frequency thermal cycling can significantly refine the microstructure by repeatedly inducing the nucleation of new grains and suppressing the growth of these newborn fine grains. Therefore, even if solidification leads to coarse columnar grains, equiaxed fine-grain microstructure can still be obtained by solid-state phase transformations. The resulting TiAl alloys have fine heteromorphic grains (-50 lm) and a fully lamellar microstructure. These fine grains contribute to good strength-ductility balance at room temperature, and their irregular shape and fully lamellar microstructure restrict the flow and distortion of grains at high temperatures, which stands a chance to significantly increase the operating temperature of TiAl parts.@2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:11
相关论文
共 60 条
[1]   A novel in situ composite structure in TiAl alloys [J].
Appel, F. ;
Oehring, M. ;
Paul, J. D. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 493 (1-2) :232-236
[2]  
Appel F, 2011, GAMMA TITANIUM ALUMINIDE ALLOYS: SCIENCE AND TECHNOLOGY, P1, DOI 10.1002/9783527636204
[3]   Electron Beam Melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility investigation [J].
Baudana, Giorgio ;
Biamino, Sara ;
Kloeden, Burghardt ;
Kirchner, Alexander ;
Weissgaerber, Thomas ;
Kieback, Bernd ;
Pavese, Matteo ;
Ugues, Daniele ;
Fino, Paolo ;
Badini, Claudio .
INTERMETALLICS, 2016, 73 :43-49
[4]   TiAl alloys in commercial aircraft engines [J].
Bewlay, B. P. ;
Nag, S. ;
Suzuki, A. ;
Weimer, M. J. .
MATERIALS AT HIGH TEMPERATURES, 2016, 33 (4-5) :549-559
[5]   Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation [J].
Biamino, S. ;
Penna, A. ;
Ackelid, U. ;
Sabbadini, S. ;
Tassa, O. ;
Fino, P. ;
Pavese, M. ;
Gennaro, P. ;
Badini, C. .
INTERMETALLICS, 2011, 19 (06) :776-781
[6]   Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions [J].
Bolz, S. ;
Oehring, M. ;
Lindemann, J. ;
Pyczak, F. ;
Paul, J. ;
Stark, A. ;
Lippmann, T. ;
Schruefer, S. ;
Roth-Fagaraseanu, D. ;
Schreyer, A. ;
Weiss, S. .
INTERMETALLICS, 2015, 58 :71-83
[7]   AUSTENITE GRAIN-SIZE REFINEMENT BY THERMAL CYCLING OF A LOW-CARBON, COPPER-CONTAINING MARTENSITIC STEEL [J].
CHAPMAN, BH ;
COOKE, MA ;
THOMPSON, SW .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 26 (10) :1547-1552
[8]  
Chen G, 2016, NAT MATER, V15, P876, DOI [10.1038/NMAT4677, 10.1038/nmat4677]
[9]   Brittle-ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys [J].
Chen, Ruirun ;
Wang, Qi ;
Yang, Yaohua ;
Guo, Jingjie ;
Su, Yanqing ;
Ding, Hongsheng ;
Fu, Hengzhi .
INTERMETALLICS, 2018, 93 :47-54
[10]  
Chen W., 2019, Addit. Manuf. Aerosp. Ind, P235, DOI DOI 10.1016/B978-0-12-814062-8.00013-3