Multi-objective optimization for capacity matching and energy performance of heat-pump-driven liquid-desiccant air-conditioning system

被引:8
|
作者
Lee, Jae-Hee [1 ]
Cheon, Seong-Yong [1 ]
Jeong, Jae-Weon [1 ]
机构
[1] Hanyang Univ, Coll Engn, Dept Architectural Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Liquid desiccant; Heat pump; Capacity matching; Energy performance; Multi-objective optimization; DESIGN OPTIMIZATION; MASS-TRANSFER; DEHUMIDIFICATION; EFFICIENCY; HUMIDITY;
D O I
10.1016/j.applthermaleng.2023.120615
中图分类号
O414.1 [热力学];
学科分类号
摘要
In heat-pump-driven liquid-desiccant (HPLD) air-conditioning systems, releasing condensing heat from heat pump to regenerator solution and exhaust air (i.e., capacity matching) is important for maintaining dehumidi-fication performance, operational feasibility, and system stability. Therefore, this study optimizes capacity matching, especially focusing on releasing extra condensing heat, which has simply been assumed to be well-treated in previous studies, in conjunction with energy performance. With four design variables under various outdoor air conditions, a multi-objective optimization is conducted to simultaneously maximize system coeffi-cient of performance (COP) and minimize a newly defined capacity-matching index of extra condenser. Pareto front, a set of optimum points, is obtained using a multi-objective genetic algorithm. Final optimum solutions are then determined and discussed based on a decision-making scenario. In optimization results, the regenerator air and solution flow rates should be respectively greater and lower than those of the absorber. The optimum temperature of absorber inlet solution is generally distributed at approximately 18 degrees C, while that of regenerator inlet solution is significantly influenced by the decision-making scenario. Finally, the system COP was maximally increased by 24 %, and the capacity-matching index of extra condenser was maximally decreased by 55 %, compared with each initial value.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Design of heat pump-driven liquid desiccant air conditioning systems for residential building
    Lee, Jae-Hee
    Ko, Jin-Young
    Jeong, Jae-Weon
    APPLIED THERMAL ENGINEERING, 2021, 183
  • [22] Factor analysis and optimization of operational parameters in a liquid desiccant air-conditioning system
    Tu, Min
    Huang, Hui
    Liu, Ze-Hua
    Chen, Huan-Xin
    Ren, Cheng-Qin
    Chen, Guo-Jie
    Hu, Yan
    ENERGY, 2017, 139 : 767 - 781
  • [23] DEVELOPMENT OF HIGH PERFORMANCE AIR-CONDITIONING SYSTEM COMBINED LIQUID DESICCANT AND R718 CENTRIFUGAL HEAT PUMP
    Yabase, Hajime
    Yamaguchi, Seiichi
    Saito, Kiyoshi
    Hasuike, Hiroshi
    Sakamoto, Hayato
    Matsumoto, Satoru
    Harada, Masatoshi
    13TH IIR GUSTAV LORENTZEN CONFERENCE ON NATURAL REFRIGERANTS: NATURAL REFRIGERANT SOLUTIONS FOR WARM CLIMATE COUNTRIES, 2018, : 1345 - 1352
  • [24] Energy Consumption Analysis of a Liquid Desiccant Air-conditioning System for Industrial Buildings
    Tang, Yidan
    Liu, Xiaohua
    6TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, VOLS I-III, PROCEEDINGS, 2009, : 551 - 558
  • [25] Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system
    Sheng, Ying
    Zhang, Yufeng
    Sun, Yuexia
    Fang, Lei
    Nie, Jinzhe
    Ma, Lijun
    ENERGY AND BUILDINGS, 2014, 80 : 358 - 365
  • [26] On-site performance investigation of liquid-desiccant air-conditioning system applied in laboratory rodent room: A comparative study
    Guan, Bowen
    Zhang, Tao
    Liu, Xiaohua
    ENERGY AND BUILDINGS, 2021, 232
  • [27] Impact of Heat Pump-Driven Liquid Desiccant Dehumidification on the Energy Performance of an Evaporative Cooling-Assisted Air Conditioning System
    Shin, Jang-Hoon
    Park, Joon-Young
    Jo, Min-Suk
    Jeong, Jae-Weon
    ENERGIES, 2018, 11 (02)
  • [28] An Energy-Saving Air-Conditioning System Based on Liquid Desiccant
    Wen, Cai
    Zhang, XiaoSong
    6TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, VOLS I-III, PROCEEDINGS, 2009, : 230 - 236
  • [29] Multi absorber stand alone liquid desiccant air-conditioning systems for higher performance
    Kumar, Ritunesh
    Dhar, P. L.
    Jain, Sanjeev
    Asati, A. K.
    SOLAR ENERGY, 2009, 83 (05) : 761 - 772
  • [30] Performance evaluation of a heat pump-driven liquid desiccant dehumidification system integrated with fresh air supply
    Li, Wenzhang
    Yin, Yonggao
    Wang, Yikai
    ENERGY AND BUILDINGS, 2022, 275