Geometric Deep Learning for Molecular Crystal Structure Prediction

被引:11
|
作者
Kilgour, Michael [1 ]
Rogal, Jutta [1 ,5 ]
Tuckerman, Mark [1 ,2 ,3 ,4 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU Shanghai, Ctr Computat Chem, NYU ECNU, Shanghai 200062, Peoples R China
[4] Simons Ctr Computat Phys Chem New York Univ, New York, NY 10003 USA
[5] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
FORCE-FIELDS; MODEL; GENERATION;
D O I
10.1021/acs.jctc.3c00031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop and test new machine learning strategies for accelerating molecular crystal structure ranking and crystal property prediction using tools from geometric deep learning on molecular graphs. Leveraging developments in graph-based learning and the availability of large molecular crystal data sets, we train models for density prediction and stability ranking which are accurate, fast to evaluate, and applicable to molecules of widely varying size and composition. Our density prediction model, MolXtalNet-D, achieves state-of-the-art performance, with lower than 2% mean absolute error on a large and diverse test data set. Our crystal ranking tool, MolXtalNet-S, correctly discriminates exper-imental samples from synthetically generated fakes and is further validated through analysis of the submissions to the Cambridge Structural Database Blind Tests 5 and 6. Our new tools are computationally cheap and flexible enough to be deployed within an existing crystal structure prediction pipeline both to reduce the search space and score/filter crystal structure candidates.
引用
收藏
页码:4743 / 4756
页数:14
相关论文
共 50 条
  • [1] Crystal Structure Prediction via Deep Learning
    Ryan, Kevin
    Lengyel, Jeff
    Shatruk, Michael
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (32) : 10158 - 10168
  • [2] EQUIBIND: Geometric Deep Learning for Drug Binding Structure Prediction
    Staerk, Hannes
    Ganea, Octavian-Eugen
    Pattanaik, Lagnajit
    Barzilay, Regina
    Jaakkola, Tommi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] Molecular geometric deep learning
    Shen, Cong
    Luo, Jiawei
    Xia, Kelin
    CELL REPORTS METHODS, 2023, 3 (11):
  • [4] Deep learning generative model for crystal structure prediction
    Luo, Xiaoshan
    Wang, Zhenyu
    Gao, Pengyue
    Lv, Jian
    Wang, Yanchao
    Chen, Changfeng
    Ma, Yanming
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [5] Geometric deep learning on molecular representations
    Atz, Kenneth
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE MACHINE INTELLIGENCE, 2021, 3 (12) : 1023 - 1032
  • [6] Geometric deep learning on molecular representations
    Kenneth Atz
    Francesca Grisoni
    Gisbert Schneider
    Nature Machine Intelligence, 2021, 3 : 1023 - 1032
  • [7] Geometric Deep Learning on Biomolecular Structure
    Townshend, Raphael
    Melo, Ligia
    Liu, David
    Dror, Ron O.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 290A - 290A
  • [8] Geometric deep learning of RNA structure
    Townshend, Raphael J. L.
    Eismann, Stephan
    Watkins, Andrew M.
    Rangan, Ramya
    Karelina, Masha
    Das, Rhiju
    Dror, Ron O.
    SCIENCE, 2021, 373 (6558) : 1047 - +
  • [9] Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction
    Egorova, Olga
    Hafizi, Roohollah
    Woods, David C.
    Day, Graeme M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (39): : 8065 - 8078
  • [10] Learning structure-energy relationships for the prediction of molecular crystal structures
    Day, Graeme M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C475 - C475