Learning key steps to attack deep reinforcement learning agents

被引:4
|
作者
Yu, Chien-Min [1 ]
Chen, Ming-Hsin [1 ]
Lin, Hsuan-Tien [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Deep learning; Reinforcement learning; Adversarial attacks; Robustness; ENVIRONMENT; GO;
D O I
10.1007/s10994-023-06318-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep reinforcement learning agents are vulnerable to adversarial attacks. In particular, recent studies have shown that attacking a few key steps can effectively decrease the agent's cumulative reward. However, all existing attacking methods define those key steps with human-designed heuristics, and it is not clear how more effective key steps can be identified. This paper introduces a novel reinforcement learning framework that learns key steps through interacting with the agent. The proposed framework does not require any human heuristics nor knowledge, and can be flexibly coupled with any white-box or black-box adversarial attack scenarios. Experiments on benchmark Atari games across different scenarios demonstrate that the proposed framework is superior to existing methods for identifying effective key steps. The results highlight the weakness of RL agents even under budgeted attacks.
引用
收藏
页码:1499 / 1522
页数:24
相关论文
共 50 条
  • [31] SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents
    Zolfagharian, Amirhossein
    Abdellatif, Manel
    Briand, Lionel C.
    Ramesh, S.
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2025, 51 (01) : 82 - 105
  • [32] Enhancing HVAC control systems through transfer learning with deep reinforcement learning agents
    Kadamala, Kevlyn
    Chambers, Des
    Barrett, Enda
    SMART ENERGY, 2024, 13
  • [33] Reinforcement learning for control: Performance, stability, and deep approximators
    Busoniu, Lucian
    de Bruin, Tim
    Tolic, Domagoj
    Kober, Jens
    Palunko, Ivana
    ANNUAL REVIEWS IN CONTROL, 2018, 46 : 8 - 28
  • [34] Hierarchical Deep Reinforcement Learning for Continuous Action Control
    Yang, Zhaoyang
    Merrick, Kathryn
    Jin, Lianwen
    Abbass, Hussein A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5174 - 5184
  • [35] Understanding adversarial attacks on observations in deep reinforcement learning
    You, Qiaoben
    Ying, Chengyang
    Zhou, Xinning
    Su, Hang
    Zhu, Jun
    Zhang, Bo
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (05)
  • [36] Deep Reinforcement Learning for Cyber Security
    Thanh Thi Nguyen
    Reddi, Vijay Janapa
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 3779 - 3795
  • [37] Reinforcement learning for deep portfolio optimization
    Yan, Ruyu
    Jin, Jiafei
    Han, Kun
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (09): : 5176 - 5200
  • [38] Deep reinforcement learning for conservation decisions
    Lapeyrolerie, Marcus
    Chapman, Melissa S.
    Norman, Kari E. A.
    Boettiger, Carl
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (11): : 2649 - 2662
  • [39] Indoor Navigation with Deep Reinforcement Learning
    Bakale, Vijayalakshmi A.
    Kumar, Yeshwanth V. S.
    Roodagi, Vivekanand C.
    Kulkarni, Yashaswini N.
    Patil, Mahesh S.
    Chickerur, Satyadhyan
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 660 - 665
  • [40] ChainerRL: A Deep Reinforcement Learning Library
    Fujita, Yasuhiro
    Nagarajan, Prabhat
    Kataoka, Toshiki
    Ishikawa, Takahiro
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22 : 1 - 14