Learning key steps to attack deep reinforcement learning agents

被引:4
|
作者
Yu, Chien-Min [1 ]
Chen, Ming-Hsin [1 ]
Lin, Hsuan-Tien [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Deep learning; Reinforcement learning; Adversarial attacks; Robustness; ENVIRONMENT; GO;
D O I
10.1007/s10994-023-06318-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep reinforcement learning agents are vulnerable to adversarial attacks. In particular, recent studies have shown that attacking a few key steps can effectively decrease the agent's cumulative reward. However, all existing attacking methods define those key steps with human-designed heuristics, and it is not clear how more effective key steps can be identified. This paper introduces a novel reinforcement learning framework that learns key steps through interacting with the agent. The proposed framework does not require any human heuristics nor knowledge, and can be flexibly coupled with any white-box or black-box adversarial attack scenarios. Experiments on benchmark Atari games across different scenarios demonstrate that the proposed framework is superior to existing methods for identifying effective key steps. The results highlight the weakness of RL agents even under budgeted attacks.
引用
收藏
页码:1499 / 1522
页数:24
相关论文
共 50 条
  • [21] Deep Reinforcement Learning: A Survey
    Wang, Xu
    Wang, Sen
    Liang, Xingxing
    Zhao, Dawei
    Huang, Jincai
    Xu, Xin
    Dai, Bin
    Miao, Qiguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5064 - 5078
  • [22] Learning to Teach Reinforcement Learning Agents
    Fachantidis, Anestis
    Taylor, Matthew
    Vlahavas, Ioannis
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (01): : 21 - 42
  • [23] Explainability in deep reinforcement learning
    Heuillet, Alexandre
    Couthouis, Fabien
    Diaz-Rodriguez, Natalia
    KNOWLEDGE-BASED SYSTEMS, 2021, 214 (214)
  • [24] Salience-Aware Face Presentation Attack Detection via Deep Reinforcement Learning
    Yu, Bingyao
    Lu, Jiwen
    Li, Xiu
    Zhou, Jie
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 413 - 427
  • [25] Multiple-Model Based Defense for Deep Reinforcement Learning Against Adversarial Attack
    Chan, Patrick P. K.
    Wang, Yaxuan
    Kees, Natasha
    Yeung, Daniel S.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 42 - 53
  • [26] Learning Battles in ViZDoom via Deep Reinforcement Learning
    Shao, Kun
    Zhao, Dongbin
    Li, Nannan
    Zhu, Yuanheng
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG'18), 2018, : 389 - 392
  • [27] Improving the learning process of deep reinforcement learning agents operating in collective heating environments
    Jacobs, Stef
    Ghane, Sara
    Houben, Pieter Jan
    Kabbara, Zakarya
    Huybrechts, Thomas
    Hellinckx, Peter
    Verhaert, Ivan
    APPLIED ENERGY, 2025, 384
  • [28] Learning Sparse Evidence-Driven Interpretation to Understand Deep Reinforcement Learning Agents
    Dao, Giang
    Huff, Wesley Houston
    Lee, Minwoo
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [29] A Survey on Visual Navigation for Artificial Agents With Deep Reinforcement Learning
    Zeng, Fanyu
    Wang, Chen
    Ge, Shuzhi Sam
    IEEE ACCESS, 2020, 8 : 135426 - 135442
  • [30] A Hybrid Multi-Task Learning Approach for Optimizing Deep Reinforcement Learning Agents
    Varghese, Nelson Vithayathil
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 : 44681 - 44703