On the local antimagic chromatic number of the lexicographic product of graphs

被引:0
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Kanthavadivel, Premalatha [3 ]
Zhang, Ruixue [4 ]
Movirichettiar, Nalliah [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
lexicographic product; regular; local antimagic chromatic number;
D O I
10.47443/dml.2022.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [41] The metric dimension of the lexicographic product of graphs
    Saputro, S. W.
    Simanjuntak, R.
    Uttunggadewa, S.
    Assiyatun, H.
    Baskoro, E. T.
    Salman, A. N. M.
    Baca, M.
    DISCRETE MATHEMATICS, 2013, 313 (09) : 1045 - 1051
  • [42] Choosability and paintability of the lexicographic product of graphs
    Keszegh, Balazs
    Zhu, Xuding
    DISCRETE APPLIED MATHEMATICS, 2017, 223 : 84 - 90
  • [43] Total Protection of Lexicographic Product Graphs
    Cabrera Martinez, Abel
    Alberto Rodriguez-Velazquez, Juan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 967 - 984
  • [44] Double domination in lexicographic product graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Rodriguez-Velazquez, J. A.
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 290 - 300
  • [45] The characteristic polynomial of lexicographic product of graphs
    Wang, Zhijun
    Wong, Dein
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 177 - 184
  • [46] On strong geodeticity in the lexicographic product of graphs
    Gajavalli, S.
    Greeni, A. Berin
    AIMS MATHEMATICS, 2024, 9 (08): : 20367 - 20389
  • [47] On the Roman domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Pavlic, Polona
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2030 - 2036
  • [48] Identifying codes of lexicographic product of graphs
    Feng, Min
    Xu, Min
    Wang, Kaishun
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04)
  • [49] On the fractional metric dimension of corona product graphs and lexicographic product graphs
    Feng, Min
    Kong, Qian
    ARS COMBINATORIA, 2018, 138 : 249 - 260
  • [50] Rainbow domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Rall, Douglas F.
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2133 - 2141