On the local antimagic chromatic number of the lexicographic product of graphs

被引:0
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Kanthavadivel, Premalatha [3 ]
Zhang, Ruixue [4 ]
Movirichettiar, Nalliah [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
lexicographic product; regular; local antimagic chromatic number;
D O I
10.47443/dml.2022.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [31] Distance Antimagic Product Graphs
    Simanjuntak, Rinovia
    Tritama, Aholiab
    SYMMETRY-BASEL, 2022, 14 (07):
  • [32] On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs
    Szumny, Waldemar
    Wloch, Iwona
    Wloch, Andrzej
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4616 - 4624
  • [33] A new upper bound of the basis number of the lexicographic product of graphs
    Jaradat, M. M. M.
    ARS COMBINATORIA, 2010, 97 : 423 - 442
  • [34] Total chromatic number for certain classes of product graphs
    Sandhiya, T. P.
    Geetha, J.
    Somasundaram, K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [35] Note on the spanning-tree packing number of lexicographic product graphs
    Li, Hengzhe
    Li, Xueliang
    Mao, Yaping
    Yue, Jun
    DISCRETE MATHEMATICS, 2015, 338 (05) : 669 - 673
  • [36] Domination in lexicographic product graphs
    Zhang, Xindong
    Liu, Juan
    Meng, Jixiang
    ARS COMBINATORIA, 2011, 101 : 251 - 256
  • [37] Lexicographic Product of Extendable Graphs
    Bai, Bing
    Wu, Zefang
    Yang, Xu
    Yu, Qinglin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (02) : 197 - 204
  • [38] Protection of Lexicographic Product Graphs
    Klein, Douglas J.
    Rodriguez-Velazquez, Juan A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 139 - 158
  • [39] Connectivity of lexicographic product and direct product of graphs
    Yang, Chao
    Xu, Jun-Ming
    ARS COMBINATORIA, 2013, 111 : 3 - 12
  • [40] The metric dimension of the lexicographic product of graphs
    Jannesari, Mohsen
    Omoomi, Behnaz
    DISCRETE MATHEMATICS, 2012, 312 (22) : 3349 - 3356