共 50 条
On the local antimagic chromatic number of the lexicographic product of graphs
被引:0
|作者:
Lau, Gee-Choon
[1
]
Shiu, Wai Chee
[2
]
Kanthavadivel, Premalatha
[3
]
Zhang, Ruixue
[4
]
Movirichettiar, Nalliah
[5
]
机构:
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金:
美国国家科学基金会;
关键词:
lexicographic product;
regular;
local antimagic chromatic number;
D O I:
10.47443/dml.2022.149
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文