On the local antimagic chromatic number of the lexicographic product of graphs

被引:0
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Kanthavadivel, Premalatha [3 ]
Zhang, Ruixue [4 ]
Movirichettiar, Nalliah [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
lexicographic product; regular; local antimagic chromatic number;
D O I
10.47443/dml.2022.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [21] Affirmative Solutions on Local Antimagic Chromatic Number
    Lau, Gee-Choon
    Ng, Ho-Kuen
    Shiu, Wai-Chee
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1337 - 1354
  • [22] Affirmative Solutions on Local Antimagic Chromatic Number
    Gee-Choon Lau
    Ho-Kuen Ng
    Wai-Chee Shiu
    Graphs and Combinatorics, 2020, 36 : 1337 - 1354
  • [23] The Local Antimagic Chromatic Numbers of Some Join Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [24] The geodetic number of the lexicographic product of graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1693 - 1698
  • [25] The fractional chromatic number, the Hall ratio, and the lexicographic product
    Johnson, P. D., Jr.
    DISCRETE MATHEMATICS, 2009, 309 (14) : 4746 - 4749
  • [26] On the super domination number of lexicographic product graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Zuazua, R.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) : 118 - 129
  • [27] The number of spanning trees in a new lexicographic product of graphs
    Liang Dong
    Li Feng
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (11) : 1 - 9
  • [28] The number of spanning trees in a new lexicographic product of graphs
    Dong Liang
    Feng Li
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 9
  • [29] The number of spanning trees in a new lexicographic product of graphs
    LIANG Dong
    LI Feng
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (11) : 57 - 65
  • [30] On the weak Roman domination number of lexicographic product graphs
    Valveny, Magdalena
    Perez-Roses, Hebert
    Rodriguez-Velazquez, Juan A.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 257 - 270