M-Net: An encoder-decoder architecture for medical image analysis using ensemble learning

被引:20
作者
Sreelakshmi, S. [1 ]
Malu, G. [2 ]
Sherly, Elizabeth [2 ]
Mathew, Robert [3 ]
机构
[1] Univ Kerala, Dept Comp Sci, Thiruvananthapuram, Kerala, India
[2] Kerala Univ Digital Sci Innovat & Technol, Thiruvananthapuram, Kerala, India
[3] Alzheimers & Related Disorders Soc India ARDSI, New Delhi, India
关键词
Alzheimer?s disease; Deep encoder-decoder network; Ensemble learning; sMRI; Segmentation; Classification; NETWORK; SEGMENTATION;
D O I
10.1016/j.rineng.2023.100927
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Only a few of the many subfields of biomedical science study include biomedical engineering, biomedical signal processing, gene analysis, and biomedical image processing. For the investigation and diagnosis of diseases, classification, detection, and recognition have tremendous importance. This work presents a fully automated deep-ensemble architecture, M-Net, for pixel-level semantic segmentation and classification of medical images. The performance of M-Net is evaluated by implementing it on the brain structural Magnetic Resonance Imaging (sMRI) for diagnosing Alzheimer's disease from various sources of datasets. The M-Net system successfully segmented the hippocampus region, vulnerable to damage at the early stage of AD, from the brain sMRI data. The obtained overall accuracy of 99% shows that the proposed deep learning technique is superior to the existing deep semantic segmentation techniques and can reduce the diagnostic time of radiologists.
引用
收藏
页数:9
相关论文
共 32 条
[11]   Multi-stream multi-scale deep convolutional networks for Alzheimer's disease detection using MR images [J].
Ge, Chenjie ;
Qu, Qixun ;
Gu, Irene Yu-Hua ;
Jakola, Asgeir Store .
NEUROCOMPUTING, 2019, 350 :60-69
[13]   Altered D-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI [J].
Huang, Jianpan ;
van Zijl, Peter C. M. ;
Han, Xiongqi ;
Dong, Celia M. ;
Cheng, Gerald W. Y. ;
Tse, Kai-Hei ;
Knutsson, Linda ;
Chen, Lin ;
Lai, Joseph H. C. ;
Wu, Ed X. ;
Xu, Jiadi ;
Chan, Kannie W. Y. .
SCIENCE ADVANCES, 2020, 6 (20)
[14]   Comparison of 1.5 T and 3 T MRI hippocampus texture features in the assessment of Alzheimer's disease [J].
Leandrou, Stephanos ;
Lamnisos, Demetris ;
Kyriacou, Panicos A. ;
Constanti, Stephanie ;
Pattichis, Constantinos S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62
[15]   iSegFormer: Interactive Segmentation via Transformers with Application to 3D Knee MR Images [J].
Liu, Qin ;
Xu, Zhenlin ;
Jiao, Yining ;
Niethammer, Marc .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 :464-474
[16]   Classification and Visualization of Alzheimer's Disease using Volumetric Convolutional Neural Network and Transfer Learning [J].
Oh, Kanghan ;
Chung, Young-Chul ;
Kim, Ko Woon ;
Kim, Woo-Sung ;
Oh, Il-Seok .
SCIENTIFIC REPORTS, 2019, 9 (1)
[17]  
Okyere S., 2022, INT J MATH MATH SCI
[18]   AI in Medical Imaging Informatics: Current Challenges and Future Directions [J].
Panayides, Andreas S. ;
Amini, Amir ;
Filipovic, Nenad ;
Sharma, Ashish ;
Tsaftaris, Sotirios A. ;
Young, Alistair ;
Foran, David J. ;
Nhan Do ;
Golemati, Spyretta ;
Kurc, Tahsin ;
Huang, Kun ;
Nikita, Konstantina S. ;
Veasey, Ben P. ;
Zervakis, Michalis ;
Saltz, Joel H. ;
Pattichis, Constantinos S. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) :1837-1857
[19]   Spatiotemporal feature extraction and classification of Alzheimer's disease using deep learning 3D-CNN for fMRI data [J].
Parmar, Harshit ;
Nutter, Brian ;
Long, Rodney ;
Antani, Sameer ;
Mitra, Sunanda .
JOURNAL OF MEDICAL IMAGING, 2020, 7 (05)
[20]  
Rallabandi V. P. Subramanyam, 2020, Informatics in Medicine Unlocked, V18, P295, DOI [10.1016/j.imu.2020.100305, 10.1016/j.imu.2020.100305]