Controlled structure preparation of low thermal conductivity Bi4B2O9 foams

被引:3
|
作者
Chen, Pan [1 ]
Li, Yuanbing [1 ,2 ,4 ]
Yin, Bo [1 ,3 ]
Li, Shujing [1 ,2 ]
Wang, Hailu [1 ]
Qiao, Zhe [1 ]
Liu, Jingfei [1 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Natl Prov Joint Engn Res Ctr High Temp Mat & Linin, Wuhan, Peoples R China
[3] Yixing Morgan Thermal Ceram Co Ltd, Yixing, Peoples R China
[4] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
关键词
Bi4B2O9; foam ceramics; pore size distribution; process parameter; thermal conductivity; CERAMICS; MICROSTRUCTURE; PERFORMANCE;
D O I
10.1111/ijac.14352
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this contribution, Bi4B2O9 foam ceramics with porosity of 76.6%-85.8% and thermal conductivity of .062-.092(W/(m center dot K)) were successfully prepared for the first time by the foam casting method using bismuth oxide and boric acid as the main raw materials and gelatin as the gel forming agent. The effects of additive content and solid loading on the slurry, pore size, and distribution as well as mechanical and thermal properties of porous ceramics were investigated. The addition of gelatin led to the stable arrangement of the liquid-gas interface, which eventually resulted in a foam with a stable pore structure. The sintered ceramics have a highly spherical morphology with typical micropores and cell window, which may also contribute to the low thermal conductivity of Bi4B2O9 foams. Bi4B2O9 foam with tailored properties and graded pore structure by adjusting the process parameters can be used as a high-performance nuclear reactor insulation material.
引用
收藏
页码:2412 / 2421
页数:10
相关论文
共 50 条
  • [1] Low thermal conductivity of Bi2Mo2O9 ceramics
    Zhang, Rui
    Wei, Tian-Ran
    Zhang, Bo-Ping
    Wang, Ke
    Ichigozaki, Daisuke
    Li, Jing-Feng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 646 : 298 - 302
  • [2] Low thermal conductivity of porous Al2O3 foams for SOFC insulation
    Lo, Y. W.
    Wei, W. C. J.
    Hsueh, C. H.
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 129 (1-2) : 326 - 330
  • [3] Preparation and microstructure evolution of novel ultra-low thermal conductivity calcium silicate-based ceramic foams
    Fan, Yibo
    Li, Shujing
    Yin, Bo
    Li, Yuanbing
    Tu, Zhi
    Cai, Zhen
    CERAMICS INTERNATIONAL, 2022, 48 (15) : 21561 - 21570
  • [4] Novel ZrP2O7 ceramic foams with controllable structures and ultra-low thermal conductivity
    Li, Shiqi
    Li, Yuanbing
    Xu, Nana
    Li, Shujing
    Zhong, Ni
    Fu, Chenzhen
    Luo, Han
    Wang, Hailu
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (14) : 7233 - 7240
  • [5] Decrease of Ca3Co4O9+δ thermal conductivity by Yb-doping
    KIirat, G.
    Aksan, M. A.
    Rasekh, Sh.
    Madre, M. A.
    Diez, J. C.
    Sotelo, A.
    CERAMICS INTERNATIONAL, 2015, 41 (10) : 12529 - 12534
  • [6] Preparation, mechanical, and thermal properties of a promising thermal barrier material: Y4Al2O9
    Zhou, Yanchun
    Lu, Xinpo
    Xiang, Huimin
    Feng, Zhihai
    JOURNAL OF ADVANCED CERAMICS, 2015, 4 (02) : 94 - 102
  • [7] Thermal conductivity and magnetic properties of the B substituted Ca3Co4O9
    Altin, S.
    Bayri, A.
    Demirel, S.
    Aksan, M. A.
    CURRENT APPLIED PHYSICS, 2014, 14 (04) : 590 - 595
  • [8] Low thermal conductivity of Lu4Si2O7N2: Theoretical and experimental studies
    Sun, Luchao
    Tian, Zhilin
    Wang, Jingyang
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (12) : 3237 - 3247
  • [9] Preparation and Dielectric Properties of La Doped Bi2Al4O9
    Zhang, Xiaoyan
    Qi, Xiwei
    Wei, Junfang
    Hu, Wenshu
    Sun, Guifang
    Zhong, Ruixia
    Chen, Huanhuan
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 890 - 893
  • [10] Extremely low thermal conductivity of β-Ga2O3 with porous structure
    Wu, H. J.
    Ning, S. T.
    Qi, N.
    Ren, F.
    Chen, Z. Q.
    Su, X. L.
    Tang, X. F.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (19)