Hilton-Milner results in projective and affine spaces

被引:1
作者
D'haeseleer, Jozefien [1 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281,Bldg S8, B-9000 Ghent, Flanders, Belgium
关键词
t-intersecting family; projective space; affine space; Erdos-Ko-Rado set; Hilton-Milner set; KO-RADO THEOREM; INTERSECTION-THEOREMS; ERDOS; SYSTEMS;
D O I
10.1515/advgeom-2022-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we analyse maximal sets of k-spaces, in PG(n, q) and AG(n, q) with n & GE; 2k + t + 3, that pairwise meet in at least a t-space. It is known that for both PG(n, q) and AG(n, q), the largest example is a t-pencil, i.e. the set of all k-spaces containing a fixed t-space. In this paper, we analyse the structure of the second largest maximal example in both PG(n, q) and AG(n, q).
引用
收藏
页码:1 / 24
页数:24
相关论文
共 18 条
[1]  
Blokhuis A, 2022, DESIGN CODE CRYPTOGR, V90, P477, DOI 10.1007/s10623-021-00983-4
[2]  
Blokhuis A, 2010, ELECTRON J COMB, V17
[3]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[4]   NONTRIVIAL t-INTERSECTING FAMILIES FOR VECTOR SPACES [J].
Cao, Mengyu ;
Lv, Benjian ;
Wang, Kaishun ;
Zhou, Sanming .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) :1823-1847
[5]   The largest Erdos-Ko-Rado sets of planes in finite projective and finite classical polar spaces [J].
De Boeck, Maarten .
DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (01) :77-117
[6]   Theorems of ErdAs-Ko-Rado type in geometrical settings [J].
De Boeck, Maarten ;
Storme, Leo .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) :1333-1348
[7]  
Ellis, NONTRIVIAL T I UNPUB
[8]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[9]   THE ERDOS-KO-RADO THEOREM FOR VECTOR-SPACES [J].
FRANKL, P ;
WILSON, RM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) :228-236
[10]  
Godsil C, 2016, CAM ST AD M, V149, P1