Thermodynamic Formalism for General Iterated Function Systems with Measures

被引:5
作者
Brasil, Jader E. [1 ]
Oliveira, Elismar R. [1 ]
Souza, Rafael Rigao [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, Ave Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
关键词
Iterated function system; Thermodynamic formalism; Ergodic theory; Transfer operator; Entropy; Pressure; Equilibrium states; INVARIANT-MEASURES; ATTRACTORS; ENTROPY; THEOREM; SETS;
D O I
10.1007/s12346-022-00722-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a theory of Thermodynamic Formalism for Iterated Function Systems with Measures (IFSm). We study the spectral properties of the Transfer and Markov operators associated to a IFSm. We introduce variational formulations for the topological entropy of holonomic measures and the topological pressure of IFSm given by a potential. A definition of equilibrium state is then natural and we prove its existence for any continuous potential. We show, in this setting, a uniqueness result for the equilibrium state requiring only the Gateaux differentiability of the pressure functional.
引用
收藏
页数:26
相关论文
共 33 条
[1]   A variational principle for the specific entropy for symbolic systems with uncountable alphabets [J].
Aguiar, D. ;
Cioletti, L. ;
Ruviaro, R. .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) :2506-2515
[2]  
Ambrosio L, 2008, LECT MATH, P1
[3]  
BARNSLEY MF, 1988, ANN I H POINCARE-PR, V24, P367
[4]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[5]  
Berinde V., 2013, Creative Mathematics Informatics, V22, P35
[6]  
Charalambos D., 2006, BORDER INFINITE DIME, V3
[7]  
Chitescu I, 2014, RESULTS MATH, V66, P511, DOI 10.1007/s00025-014-0391-5
[8]  
Cioletti L, 2017, Arxiv, DOI arXiv:1707.01892
[9]   Applications of variable discounting dynamic programming to iterated function systems and related problems [J].
Cioletti, L. ;
Oliveira, Elismar R. .
NONLINEARITY, 2019, 32 (03) :853-883
[10]  
Dellacherie C., 1978, PROBABILITIES POTENT, V29