Estimation of PM2.5 and PM10 Mass Concentrations in Beijing Using Gaofen-1 Data at 100 m Resolution

被引:2
作者
Wu, Shuhui [1 ,2 ]
Sun, Yuxin [1 ]
Bai, Rui [1 ]
Jiang, Xingxing [1 ]
Jin, Chunlin [1 ]
Xue, Yong [1 ,3 ]
机构
[1] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Peoples R China
[3] Univ Derby, Coll Sci & Engn, Sch Comp & Math, Kedleston Rd, Derby DE22 1GB, England
基金
中国国家自然科学基金;
关键词
AOD; Gaofen-1; PM2.5; PM10; remote sensing; urban air pollution; AEROSOL OPTICAL DEPTH; GROUND-LEVEL PM2.5; FINE PARTICULATE MATTER; TEMPORALLY WEIGHTED REGRESSION; LONG-TERM EXPOSURE; AIR-QUALITY; SATELLITE-OBSERVATIONS; NORTH CHINA; MORTALITY; MODIS;
D O I
10.3390/rs16040604
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the advantage of high spatial coverage, using satellite-retrieved aerosol optical depth (AOD) data to estimate PM2.5 and PM10 mass concentrations is a current research priority. Statistical models are the common method of PM estimation currently, which do not require the knowledge of complex chemical and physical interactions. However, the statistical models rely on station data, which results in less accurate PM estimation concentrations in areas where station data are missing. Hence, a new hybrid model, with low dependency on on-site data, was proposed for PM2.5 and PM10 mass concentration estimation. The Gaofen-1 satellite and MODIS data were employed to estimate PM2.5 and PM10 concentrations with 100 m spatial resolution in Beijing, China. Then, the estimated PM2.5/10 mass concentration data in 2020 were employed to conduct a spatio-temporal analysis for the investigation of the particulate matter characteristic in Beijing. The estimation result of PM2.5 was validated by the ground stations with R-2 ranging from 0.91 to 0.98 and the root mean square error (RMSE) ranging from 4.51 mu g/m3 to 17.04 mu g/m3, and that for PM10 was validated by the ground stations with R-2 ranging from 0.85 to 0.98 and the RMSE ranging from 6.98 mu g/m3 to 29.00 mu g/m3. The results showed that the hybrid model has a good performance in PM2.5/10 estimation and can improve the coverage of the results without sacrificing the effectiveness of the model, providing more detailed spatial information for urban-scale studies.
引用
收藏
页数:18
相关论文
共 76 条
[1]   Retrieval of High-Resolution Aerosol Optical Depth for Urban Air Pollution Monitoring [J].
Bai, Rui ;
Xue, Yong ;
Jiang, Xingxing ;
Jin, Chunlin ;
Sun, Yuxin .
ATMOSPHERE, 2022, 13 (05)
[2]   Air pollution exposure during pregnancy and reduced birth size: a prospective birth cohort study in Valencia, Spain [J].
Ballester, Ferran ;
Estarlich, Marisa ;
Iniguez, Carmen ;
Llop, Sabrina ;
Ramon, Rosa ;
Esplugues, Ana ;
Lacasana, Marina ;
Rebagliato, Marisa .
ENVIRONMENTAL HEALTH, 2010, 9
[3]   Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project [J].
Beelen, Rob ;
Raaschou-Nielsen, Ole ;
Stafoggia, Massimo ;
Andersen, Zorana Jovanovic ;
Weinmayr, Gudrun ;
Hoffmann, Barbara ;
Wolf, Kathrin ;
Samoli, Evangelia ;
Fischer, Paul ;
Nieuwenhuijsen, Mark ;
Vineis, Paolo ;
Xun, Wei W. ;
Katsouyanni, Klea ;
Dimakopoulou, Konstantina ;
Oudin, Anna ;
Forsberg, Bertil ;
Modig, Lars ;
Havulinna, Aki S. ;
Lanki, Timo ;
Turunen, Anu ;
Oftedal, Bente ;
Nystad, Wenche ;
Nafstad, Per ;
De Faire, Ulf ;
Pedersen, Nancy L. ;
Ostenson, Claes-Goeran ;
Fratiglioni, Laura ;
Penell, Johanna ;
Korek, Michal ;
Pershagen, Goeran ;
Eriksen, Kirsten Thorup ;
Overvad, Kim ;
Ellermann, Thomas ;
Eeftens, Marloes ;
Peeters, Petra H. ;
Meliefste, Kees ;
Wang, Meng ;
Bueno-de-Mesquita, Bas ;
Sugiri, Dorothea ;
Kraemer, Ursula ;
Heinrich, Joachim ;
de Hoogh, Kees ;
Key, Timothy ;
Peters, Annette ;
Hampel, Regina ;
Concin, Hans ;
Nagel, Gabriele ;
Ineichen, Alex ;
Schaffner, Emmanuel ;
Probst-Hensch, Nicole .
LANCET, 2014, 383 (9919) :785-795
[4]   An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China [J].
Chen, Binjie ;
You, Shixue ;
Ye, Yang ;
Fu, Yongyong ;
Ye, Ziran ;
Deng, Jinsong ;
Wang, Ke ;
Hong, Yang .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 768
[5]   Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information [J].
Chen, Gongbo ;
Knibbs, Luke D. ;
Zhang, Wenyi ;
Li, Shanshan ;
Cao, Wei ;
Guo, Jianping ;
Ren, Hongyan ;
Wang, Boguang ;
Wang, Hao ;
Williams, Gail ;
Hamm, N. A. S. ;
Guo, Yuming .
ENVIRONMENTAL POLLUTION, 2018, 233 :1086-1094
[6]   Estimating PM2.5 with high-resolution 1-km AOD data and an improved machine learning model over Shenzhen, China [J].
Chen, Wenqian ;
Ran, Haofan ;
Cao, Xiaoyi ;
Wang, Jingzhe ;
Teng, Dexiong ;
Chen, Jing ;
Zheng, Xuan .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 746
[7]   Risk of Non accidental and Cardiovascular Mortality in Relation to Long-term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study [J].
Crouse, Dan L. ;
Peters, Paul A. ;
van Donkelaar, Aaron ;
Goldberg, Mark S. ;
Villeneuve, Paul J. ;
Brion, Orly ;
Khan, Saeeda ;
Atari, Dominic Odwa ;
Jerrett, Michael ;
Pope, C. Arden, III ;
Brauer, Michael ;
Brook, Jeffrey R. ;
Martin, Randall V. ;
Stieb, David ;
Burnett, Richard T. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2012, 120 (05) :708-714
[8]   Relationship between particulate matter and childhood asthma - basis of a future warning system for central Phoenix [J].
Dimitrova, R. ;
Lurponglukana, N. ;
Fernando, H. J. S. ;
Runger, G. C. ;
Hyde, P. ;
Hedquist, B. C. ;
Anderson, J. ;
Bannister, W. ;
Johnson, W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (05) :2479-2490
[9]   Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality [J].
Engel-Cox, JA ;
Holloman, CH ;
Coutant, BW ;
Hoff, RM .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (16) :2495-2509
[10]   Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model [J].
Geng, Guannan ;
Zhang, Qiang ;
Martin, Randall V. ;
van Donkelaar, Aaron ;
Huo, Hong ;
Che, Huizheng ;
Lin, Jintai ;
He, Kebin .
REMOTE SENSING OF ENVIRONMENT, 2015, 166 :262-270