METTL3-Mediated RNA m6A Modification Regulates the Angiogenic Behaviors of Retinal Endothelial Cells by Methylating MMP2 and TIE2

被引:3
|
作者
Lin, Yong [1 ]
Luo, Guangying [1 ]
Liu, Qi [1 ]
Yang, Rusen [1 ]
Reinach, Peter Sol [1 ]
Yan, Dongsheng [1 ]
机构
[1] Wenzhou Med Univ, Eye Hosp, State Key Lab Ophthalmol Optometry & Visual Sci, Wenzhou 325027, Peoples R China
基金
中国国家自然科学基金;
关键词
METTL3; m6A; retinal angiogenesis; MMP2; TIE2; METTL3; PROMOTES; N-6-METHYLADENOSINE; MOUSE; MODEL;
D O I
10.1167/iovs.64.13.18
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. N-6-methyladenosine (m(6)A) is a commonly occurring modification of mRNAs, catalyzed by a complex containing methyltransferase like 3 (METTL3). Our research aims to explore how METTL3-dependent m6A modification affects the functions of retinal endothelial cells (RECs). METHODS. An oxygen-induced retinopathy (OIR) mouse model was established, and RECs were isolated using magnetic beads method. Human retinal microvascular endothelial cells (HRMECs) were treated with normoxia (21% O-2) or hypoxia (1% O-2). Dot blot assay determined m(6)A modification levels. Quantitative RT-PCR and Western blot detected the mRNA and protein expression levels of the target candidates, respectively. Genes were knocked down by small interfering RNA transfection. Matrigel-based angiogenesis and transwell assays evaluated the abilities of endothelial tube formation and migration, respectively. Methylated RNA immunoprecipitation-qPCR determined the levels of m(6)A modification in the target genes. RESULTS. The m(6)A modification levels were significantly upregulated in the retinas and RECs of OIR mice. Exposure to hypoxia significantly elevated both METTL3 expression and m(6)A modification levels in HRMECs. METTL3 knockdown curtailed endothelial tube formation and migration in vitro under both normoxic and hypoxic conditions. Concurrently, this knockdown in HRMECs resulted in reduced m(6)A modification levels of MMP2 and TIE2 transcripts, subsequently leading to a decrease in their respective protein expressions. Notably, knockdown of MMP2 and TIE2 also markedly inhibited the angiogenic activities of HRMECs. CONCLUSIONS. METTL3-mediated m(6)A modification promotes the angiogenic behaviors of RECs by targeting MMP2 and TIE2, suggesting its significance in retinal angiogenesis and METTL3 as a potential therapeutic target.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] METTL3-Mediated m6A RNA Modification Regulates Corneal Injury Repair
    Dai, Yarong
    Cheng, Maosheng
    Zhang, Siyan
    Ling, Rongsong
    Wen, Jieqi
    Cheng, Yifan
    Huang, Boxuan
    Li, Jinrong
    Dai, Caifeng
    Mao, Shiqing
    Lin, Shuibin
    Shen, Huangxuan
    Jiang, Yizhou
    STEM CELLS INTERNATIONAL, 2021, 2021
  • [2] METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells
    Luo, Haiyun
    Liu, Wenjing
    Zhang, Yanli
    Yang, Yeqing
    Jiang, Xiao
    Wu, Shiqing
    Shao, Longquan
    STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
  • [3] METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells
    Haiyun Luo
    Wenjing Liu
    Yanli Zhang
    Yeqing Yang
    Xiao Jiang
    Shiqing Wu
    Longquan Shao
    Stem Cell Research & Therapy, 12
  • [4] Nr-CWS regulates METTL3-mediated m6A modification of CDS2 mRNA in vascular endothelial cells and has prognostic significance
    Zhang, Jingyu
    Chen, Feifei
    Wei, Wuhan
    Ning, Qianqian
    Zhu, Dong
    Fan, Jiang
    Wang, Haoyu
    Wang, Jian
    Zhang, Aijun
    Jin, Peisheng
    Li, Qiang
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [5] METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis
    Xiong, Qiuchan
    Liu, Caojie
    Zheng, Xin
    Zhou, Xinyi
    Lei, Kexin
    Zhang, Xiaohan
    Wang, Qian
    Lin, Weimin
    Tong, Ruizhan
    Xu, Ruoshi
    Yuan, Quan
    INTERNATIONAL JOURNAL OF ORAL SCIENCE, 2022, 14 (01)
  • [6] Mettl3-mediated m6A RNA methylation regulates osteolysis induced by titanium particles
    Lin, Xiaoxuan
    Yang, Yang
    Huang, Yaohong
    Li, E.
    Zhuang, Xiumei
    Zhang, Zhengchuan
    Xu, Ruogu
    Yu, Xiaolin
    Deng, Feilong
    MOLECULAR MEDICINE REPORTS, 2024, 29 (03)
  • [7] METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis
    Qiuchan Xiong
    Caojie Liu
    Xin Zheng
    Xinyi Zhou
    Kexin Lei
    Xiaohan Zhang
    Qian Wang
    Weimin Lin
    Ruizhan Tong
    Ruoshi Xu
    Quan Yuan
    International Journal of Oral Science, 2022, 14
  • [8] Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation
    Xu, Kai
    Yang, Ying
    Feng, Gui-Hai
    Sun, Bao-Fa
    Chen, Jun-Qing
    Li, Yu-Fei
    Chen, Yu-Sheng
    Zhang, Xin-Xin
    Wang, Chen-Xin
    Jiang, Li-Yuan
    Liu, Chao
    Zhang, Ze-Yu
    Wang, Xiu-Jie
    Zhou, Qi
    Yang, Yun-Gui
    Li, Wei
    CELL RESEARCH, 2017, 27 (09) : 1100 - 1114
  • [9] Mettl3-Mediated m6a Modification Is Essential for the Maintenance of Genomic Stability of Erythroid Cells
    Zhang, Linlin
    Zhao, Huizhi
    Wang, Shihui
    Wu, Xueting
    Yang, Qiangian
    Cheng, Ying
    Zhao, Jiangwei
    Zhang, Shijie
    Zhang, Huan
    Chen, Lixiang
    An, Xiuli
    Qu, Xiaoli
    BLOOD, 2024, 144 : 2449 - 2450
  • [10] METTL3-Mediated m6A Modification Links Liver Homeostasis and Pathology
    Ma, Wenbo
    Wu, Tong
    AMERICAN JOURNAL OF PATHOLOGY, 2022, 192 (01): : 18 - 20