CRISPR-based epigenome editing: mechanisms and applications

被引:7
|
作者
Fadul, Shaima M. [1 ]
Arshad, Aleeza [2 ]
Mehmood, Rashid [1 ]
机构
[1] Alfaisal Univ, Coll Sci & Gen Studies, Dept Life Sci, Riyadh 11533, Saudi Arabia
[2] Ayub Teaching Hosp, Med Teaching Inst, Abbottabad 22020, Pakistan
关键词
DNA METHYLATION; GENE-EXPRESSION; EPIGENETIC REGULATION; REGULATORY ELEMENTS; CAS9; RIBONUCLEOPROTEIN; DONOR DNA; IN-VITRO; GENOME; TRANSCRIPTION; CLASSIFICATION;
D O I
10.2217/epi-2023-0281
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Epigenomic anomalies contribute significantly to the development of numerous human disorders. The development of epigenetic research tools is essential for understanding how epigenetic marks contribute to gene expression. A gene-editing technique known as CRISPR (clustered regularly interspaced short palindromic repeats) typically targets a particular DNA sequence using a guide RNA (gRNA). CRISPR/Cas9 technology has been remodeled for epigenome editing by generating a 'dead' Cas9 protein (dCas9) that lacks nuclease activity and juxtaposing it with an epigenetic effector domain. Based on fusion partners of dCas9, a specific epigenetic state can be achieved. CRISPR-based epigenome editing has widespread application in drug screening, cancer treatment and regenerative medicine. This paper discusses the tools developed for CRISPR-based epigenome editing and their applications. CRISPR/Cas9 system has been remodeled for epigenome editing by juxtaposing 'dead' dCas9 with an epigenetic effector domain. This tool has applications in cancer treatment and regenerative medicine.
引用
收藏
页码:1137 / 1155
页数:19
相关论文
共 50 条
  • [1] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Gemberling, Matthew
    Siklenka, Keith
    Rodriguez, Erica
    Tonn-Eisinger, Katherine R.
    Barrera, Alejandro
    Liu, Fang
    Kantor, Ariel
    Li, Liqing
    Cigliola, Valentina
    Hazlett, Mariah F.
    Williams, Courtney
    Bartelt, Luke C.
    Madigan, Victoria J.
    Bodle, Josephine
    Daniels, Heather
    Rouse, Douglas C.
    Hilton, Isaac B.
    Asokan, Aravind
    Ciofani, Maria
    Poss, Kenneth D.
    Reddy, Timothy E.
    West, Anne E.
    Gersbach, Charles A.
    NATURE METHODS, 2021, 18 (08) : 965 - +
  • [2] Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing
    Rohm, Dahlia
    Black, Joshua B.
    Mccutcheon, Sean R.
    Barrera, Alejandro
    Berry, Shante S.
    Morone, Daniel J.
    Nuttle, Xander
    de Esch, Celine E.
    Tai, Derek J. C.
    Talkowski, Michael E.
    Iglesias, Nahid
    Gersbach, Charles A.
    CELL GENOMICS, 2025, 5 (02):
  • [3] Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing
    Nunez, James K.
    Chen, Jin
    Pommier, Greg C.
    Cogan, J. Zachery
    Replogle, Joseph M.
    Adriaens, Carmen
    Ramadoss, Gokul N.
    Shi, Quanming
    Hung, King L.
    Samelson, Avi J.
    Pogson, Angela N.
    Kim, James Y. S.
    Chung, Amanda
    Leonetti, Manuel D.
    Chang, Howard Y.
    Kampmann, Martin
    Bernstein, Bradley E.
    Hovestadt, Volker
    Gilbert, Luke A.
    Weissman, Jonathan S.
    CELL, 2021, 184 (09) : 2503 - +
  • [4] CRISPRepi: a multi-omic atlas for CRISPR-based epigenome editing
    Shi, Leisheng
    Li, Shasha
    Zhu, Rongyi
    Lu, Chenyang
    Xu, Xintian
    Li, Changzhi
    Huang, Xinyue
    Zhao, Xiaolu
    Mao, Fengbiao
    Li, Kailong
    NUCLEIC ACIDS RESEARCH, 2024, : D901 - D913
  • [5] CRISPR technologies for precise epigenome editing
    Nakamura, Muneaki
    Gao, Yuchen
    Dominguez, Antonia A.
    Qi, Lei S.
    NATURE CELL BIOLOGY, 2021, 23 (01) : 11 - 22
  • [6] CRISPR-based reagents to study the influence of the epigenome on gene expression
    Lavender, P.
    Kelly, A.
    Hendy, E.
    McErlean, P.
    CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2018, 194 (01) : 9 - 16
  • [7] CRISPR/Cas mediated epigenome editing for cancer therapy
    Ansari, Imran
    Chaturvedi, Animesh
    Chitkara, Deepak
    Singh, Saurabh
    SEMINARS IN CANCER BIOLOGY, 2022, 83 : 570 - 583
  • [8] CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility
    Goell, Jacob H.
    Hilton, Isaac B.
    TRENDS IN BIOTECHNOLOGY, 2021, 39 (07) : 678 - 691
  • [9] CRISPR-based gene editing in plants: Focus on reagents and their delivery tools
    Ebrahimi, Vida
    Hashemi, Atieh
    BIOIMPACTS, 2025, 15
  • [10] RiboCas: A Universal CRISPR-Based Editing Tool for Clostridium
    Canadas, Ines C.
    Groothuis, Daphne
    Zygouropoulou, Maria
    Rodrigues, Raquel
    Minton, Nigel P.
    ACS SYNTHETIC BIOLOGY, 2019, 8 (06): : 1379 - 1390