A deep Retinex network for underwater low-light image enhancement

被引:6
|
作者
Ji, Kai [1 ]
Lei, Weimin [1 ]
Zhang, Wei [1 ]
机构
[1] Northeastern Univ, Comp Sci & Engn, 195,Chuangxin Rd,Hunnan Dist, Shenyang 110169, Liaoning, Peoples R China
关键词
Underwater images; Low-light enhancement; Retinex; Deep learning; HISTOGRAM; EQUALIZATION; MODEL;
D O I
10.1007/s00138-023-01478-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater images suffer from color cast and low contrast due to the light absorption and scattering. Especially when natural light is not sufficient, large dark areas appear in the captured image, making it impossible to understand the image content. To address this issue, we propose an underwater low-light enhancement method based on Retinex theory. Our model is an end-to-end trainable. The decomposition network decomposes the raw image into reflectance and illumination according to Retinex theory. In the reflectance enhancement network, cross-residual blocks and dense connections can improve the efficiency of feature utilization and the hybrid attention concentrate on the regions of interest in feature maps from different perspectives. The illumination adjustment network utilizes adaptive frequency convolutional blocks to generate additional band information, which reconstructs the more natural illumination. In order to preserve the color consistency of the enhanced image with the reference image, we project the HSV space into the Cartesian coordinate system and use the Euclidean distance as the color cast loss to constrain the enhancement network. Qualitative and quantitative evaluations on different underwater datasets indicate that our method has the excellent performance and can achieve delightful visual enhancements.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Retinex-Based Fast Algorithm for Low-Light Image Enhancement
    Liu, Shouxin
    Long, Wei
    He, Lei
    Li, Yanyan
    Ding, Wei
    ENTROPY, 2021, 23 (06)
  • [42] A structure and texture revealing retinex model for low-light image enhancement
    Xuesong Li
    Qilei Li
    Marco Anisetti
    Gwanggil Jeon
    Mingliang Gao
    Multimedia Tools and Applications, 2024, 83 : 2323 - 2347
  • [43] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma Hongqiang
    Ma Shiping
    Xu Yuelei
    Zhu Mingming
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [44] Low-light image enhancement based on exponential Retinex variational model
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    IET IMAGE PROCESSING, 2021, 15 (12) : 3003 - 3019
  • [45] A structure and texture revealing retinex model for low-light image enhancement
    Li, Xuesong
    Li, Qilei
    Anisetti, Marco
    Jeon, Gwanggil
    Gao, Mingliang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2323 - 2347
  • [46] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma H.
    Ma S.
    Xu Y.
    Zhu M.
    Guangxue Xuebao/Acta Optica Sinica, 2019, 39 (02):
  • [47] Extreme Low-light Image Enhancement Using Deep Neural Network
    Xu, Ming
    Li, Hongping
    Chen, Jian
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [48] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [49] DMT-Net: Deep Multiple Networks for Low-Light Image Enhancement Based on Retinex Model
    Duong, Minh-Thien
    Lee, Seongsoo
    Hong, Min-Cheol
    IEEE ACCESS, 2023, 11 : 132147 - 132161
  • [50] A Dual-Branch Autoencoder Network for Underwater Low-Light Polarized Image Enhancement
    Xue, Chang
    Liu, Qingyu
    Huang, Yifan
    Cheng, En
    Yuan, Fei
    REMOTE SENSING, 2024, 16 (07)