THEORY OF CERTAIN NON-UNIVALENT ANALYTIC FUNCTIONS

被引:2
作者
Gangania, Kamaljeet [1 ,2 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, New Delhi, India
[2] Bhagwan Parshuram Inst Technol, Dept Math, New Delhi, India
关键词
Poly-analytic; bi-analytic; non-univalent; starlike; Bohr and Rogosinski's inequality; coefficient problems; HANKEL DETERMINANT; BOOTH LEMNISCATE; BLOCH CONSTANTS; STARLIKE;
D O I
10.1515/ms-2023-0086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the non-univalent function's properties reminiscent of the theory of univalent starlike functions. Let the analytic function psi(z) =Sigma(infinity)(i=1)A(i)z(i), A1 not equal 0 be univalent in the unit disk. Non-univalent functions may be found in the class F(psi) of analytic functionsfof the form f(z) =z+ Sigma(infinity)(k=2) a(k)z(k) satisfying (zf'(z)/f(z)-1) < psi(z). Such functions, like the Ma and Minda classesof starlike functions, also have nice geometric properties. For these functions, growth and distortiontheorems have been established. Further, we obtain bounds for some sharp coefficient functionals andestablish the Bohr and Rogosinki phenomenon for the class F(psi). Non-analytic functions that shareproperties of analytic functions are known as poly-analytic functions. Moreover, we compute Bohr andRogosinski's radius for poly-analytic functions with analytic counterparts in the class F(psi) or classesof Ma-Minda starlike and convex functions
引用
收藏
页码:1163 / 1182
页数:20
相关论文
共 36 条
  • [1] On the Univalence of Poly-analytic Functions
    Abdulhadi, Zayid
    El Hajj, Layan
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (01) : 169 - 181
  • [2] Remarks on the Bohr and Rogosinski phenomena for power series
    Aizenberg, Lev
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (01) : 69 - 78
  • [3] On the Second Hankel Determinant for the kth-Root Transform of Analytic Functions
    Alarifi, Najla M.
    Ali, Rosihan M.
    Ravichandran, V.
    [J]. FILOMAT, 2017, 31 (02) : 227 - 245
  • [4] Coefficient bounds for p-valent functions
    Ali, Rosihan M.
    Ravichandran, V.
    Seenivasagan, N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) : 35 - 46
  • [5] Bohr-Rogosinski Inequalities for Bounded Analytic Functions
    Alkhaleefah, Seraj A.
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (11) : 2110 - 2119
  • [6] Bohr phenomenon for subordinating families of certain univalent functions
    Bhowmik, Bappaditya
    Das, Nilanjan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) : 1087 - 1098
  • [7] On concave univalent functions
    Bhowmik, Bappaditya
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) : 606 - 612
  • [8] Bohr H, 1914, P LOND MATH SOC, V13, P1
  • [9] Bloch constants for planar harmonic mappings
    Chen, HH
    Gauthier, PM
    Hengartner, W
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) : 3231 - 3240
  • [10] Sharp Estimates of Generalized Zalcman Functional of Early Coefficients for Ma-Minda Type Functions
    Cho, Nak Eun
    Kwon, Oh Sang
    Lecko, Adam
    Sim, Young Jae
    [J]. FILOMAT, 2018, 32 (18) : 6267 - 6280