Energy Repartition and Entropy Generation across the Earth's Bow Shock: MMS Observations

被引:7
作者
Agapitov, O. V. [1 ,2 ]
Krasnoselskikh, V. [1 ,3 ]
Balikhin, M. [4 ]
Bonnell, J. W. [1 ]
Mozer, F. S. [1 ]
Avanov, L. [5 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Natl Taras Shevchenko Univ Kyiv, Astron & Space Phys Dept, Kiev, Ukraine
[3] Univ Orleans, LPC2E, Orleans, France
[4] Univ Sheffield, Sheffield, England
[5] NASA GSFC, Greenbelt, MD 20771 USA
关键词
ACCELERATION; DISTRIBUTIONS; PLASMA;
D O I
10.3847/1538-4357/acdb7b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The evolution of plasma entropy and the process of plasma energy redistribution at the collisionless plasma shock front are evaluated based on the high temporal resolution data from the four Magnetospheric Multiscale spacecraft during the crossing of the terrestrial bow shock. The ion distribution function has been separated into the populations with different characteristic behaviors in the vicinity of the shock: the upstream core population, the reflected ions, the gyrating ions, the ions trapped in the vicinity of the shock, and the downstream core population. The values of ion and electron moments (density, bulk velocity, and temperature) have been determined separately for these populations. It is shown that the solar wind core population bulk velocity slows down mainly in the ramp with the electrostatic potential increase but not in the foot region as it was supposed. The reflected ion population determines the foot region properties, so the proton temperature peak in the foot region is an effect of the relative motion of the different ion populations, rather than an actual increase in the thermal speed of any of the ion population. The ion entropy evaluated showed a significant increase across the shock: the enhancement of the ion entropy occurs in the foot of the shock front and at the ramp, where the reflected ions are emerging in addition to the upstream solar wind ions, the anisotropy growing to generate the bursts of ion-scale electrostatic waves. The entropy of electrons across the shock does not show a significant change: electron heating goes almost adiabatically.
引用
收藏
页数:9
相关论文
共 46 条
[1]  
Axford W. I., 1977, Int. Cosmic Ray Conf, V11, P132
[2]   Collisionless Shocks in the Heliosphere: Foot Width Revisited [J].
Balikhin, Michael ;
Gedalin, Michael .
ASTROPHYSICAL JOURNAL, 2022, 925 (01)
[3]  
BAME SJ, 1979, SPACE SCI REV, V23, P75, DOI 10.1007/BF00174112
[4]   ACCELERATION OF COSMIC-RAYS IN SHOCK FRONTS .1. [J].
BELL, AR .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 182 (01) :147-156
[5]   On the propagation of bubbles in the geomagnetic tail [J].
Birn, J ;
Raeder, J ;
Wang, YL ;
Wolf, RA ;
Hesse, M .
ANNALES GEOPHYSICAE, 2004, 22 (05) :1773-1786
[6]   Magnetospheric Multiscale Overview and Science Objectives [J].
Burch, J. L. ;
Moore, T. E. ;
Torbert, R. B. ;
Giles, B. L. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :5-21
[7]   Energy dissipation and entropy in collisionless plasma [J].
Du, Senbei ;
Zank, Gary P. ;
Li, Xiaocan ;
Guo, Fan .
PHYSICAL REVIEW E, 2020, 101 (03)
[8]   The Axial Double Probe and Fields Signal Processing for the MMS Mission [J].
Ergun, R. E. ;
Tucker, S. ;
Westfall, J. ;
Goodrich, K. A. ;
Malaspina, D. M. ;
Summers, D. ;
Wallace, J. ;
Karlsson, M. ;
Mack, J. ;
Brennan, N. ;
Pyke, B. ;
Withnell, P. ;
Torbert, R. ;
Macri, J. ;
Rau, D. ;
Dors, I. ;
Needell, J. ;
Lindqvist, P. -A. ;
Olsson, G. ;
Cully, C. M. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :167-188
[9]   Localized Heating of the Martian Topside Ionosphere Through the Combined Effects of Magnetic Pumping by Large-Scale Magnetosonic Waves and Pitch Angle Diffusion by Whistler Waves [J].
Fowler, C. M. ;
Agapitov, O., V ;
Xu, S. ;
Mitchell, D. L. ;
Andersson, L. ;
Artemyev, A. ;
Espley, J. ;
Ergun, R. E. ;
Mazelle, C. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (05)
[10]   Magnetospheric ion influence on magnetic reconnection at the duskside magnetopause [J].
Fuselier, S. A. ;
Burch, J. L. ;
Cassak, P. A. ;
Goldstein, J. ;
Gomez, R. G. ;
Goodrich, K. ;
Lewis, W. S. ;
Malaspina, D. ;
Mukherjee, J. ;
Nakamura, R. ;
Petrinec, S. M. ;
Russell, C. T. ;
Strangeway, R. J. ;
Torbert, R. B. ;
Trattner, K. J. ;
Valek, P. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (04) :1435-1442