A theory of dark energy that matches dark matter

被引:3
作者
Wang, Huai -Yu [1 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
关键词
Negative Integer Photon State; Dark Photon; Dark Energy; Negative Kinetic Energy Matter; Dark Matter; Negative Pressure; Negative Temperature;
D O I
10.4006/0836-1398-36.2.149
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a theory of dark energy is proposed that matches dark matter. The relativistic quantum mechanics equations reveal that free particles can have negative energies. We think that the negative energy is the dark energy, which behaves as dark photons with negative energies. In this work, the photon number states are extended to the cases where the photon number can be negative integers, called negative integer photon states, the physical meaning of which are that the photons in such a state are of negative energy, i.e., dark photons. The dark photons constitute dark radiation, also called negative radiation. The formalism of the statistical mechanics and thermodynamics of the dark radiation is presented. This version of dark energy is of negative temperature and negative pressure, the latter regarded as responsible for the accelerate expansion of the universe. It is believed that there is a symmetry of energy-dark energy in the uni-verse. In our previous work, the theory of the motion of the matters with negative kinetic energy was presented. In our opinion, the negative kinetic energy matter is dark matter. In the present work, we demonstrate that the dark substances absorb and release dark energy. In this view, the dark matter and dark energy match. Therefore, there is a symmetry of matter-energy match and dark matter-dark energy match in the universe. We present the reasons why the negative kinetic energy systems and negative radiation are dark to us.VC 2023 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-36.2.149]
引用
收藏
页码:149 / 159
页数:11
相关论文
共 71 条
[51]   FREQUENCY COMBS Combs for dark energy [J].
Schibli, Thomas R. .
NATURE PHOTONICS, 2008, 2 (12) :712-713
[52]  
Schiff I., 1949, Quantum Mechanics
[53]  
Scully M.O., 1999, Quantum optics," ed
[54]   MEASUREMENTS OF ATTRACTIVE FORCES BETWEEN FLAT PLATES [J].
SPARNAAY, MJ .
PHYSICA, 1958, 24 (09) :751-764
[55]   VACUUM FLUCTUATION AND RETARDATION EFFECTS ON LONG-RANGE POTENTIALS [J].
SPRUCH, L ;
KELSEY, EJ .
PHYSICAL REVIEW A, 1978, 18 (03) :845-852
[56]   Work Storage in States of Apparent Negative Thermodynamic Temperature [J].
Struchtrup, Henning .
PHYSICAL REVIEW LETTERS, 2018, 120 (25)
[57]   MEASUREMENT OF THE CASIMIR-POLDER FORCE [J].
SUKENIK, CI ;
BOSHIER, MG ;
CHO, D ;
SANDOGHDAR, V ;
HINDS, EA .
PHYSICAL REVIEW LETTERS, 1993, 70 (05) :560-563
[58]   Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear [J].
Troxel, M. A. ;
MacCrann, N. ;
Zuntz, J. ;
Eifler, T. F. ;
Krause, E. ;
Dodelson, S. ;
Gruen, D. ;
Blazek, J. ;
Friedrich, O. ;
Samuroff, S. ;
Prat, J. ;
Secco, L. F. ;
Davis, C. ;
Ferte, A. ;
DeRose, J. ;
Alarcon, A. ;
Amara, A. ;
Baxter, E. ;
Becker, M. R. ;
Bernstein, G. M. ;
Bridle, S. L. ;
Cawthon, R. ;
Chang, C. ;
Choi, A. ;
De Vicente, J. ;
Drlica-Wagner, A. ;
Elvin-Poole, J. ;
Frieman, J. ;
Gatti, M. ;
Hartley, W. G. ;
Honscheid, K. ;
Hoyle, B. ;
Huff, E. M. ;
Huterer, D. ;
Jain, B. ;
Jarvis, M. ;
Kacprzak, T. ;
Kirk, D. ;
Kokron, N. ;
Krawiec, C. ;
Lahav, O. ;
Liddle, A. R. ;
Peacock, J. ;
Rau, M. M. ;
Refregier, A. ;
Rollins, R. P. ;
Rozo, E. ;
Rykoff, E. S. ;
Sanchez, C. ;
Sevilla-Noarbe, I. .
PHYSICAL REVIEW D, 2018, 98 (04)
[59]  
Walls F., 2008, Quantum Optics, V2nd
[60]  
Wang 6H. -Y., 2021, J. North China Inst. Sci. Technol., V18, P1, DOI [10.19956/j.cnki.ncist.2021.04.001, DOI 10.19956/J.CNKI.NCIST.2021.04.001]