Entity Embeddings for Entity Ranking: A Replicability Study

被引:0
作者
Oza, Pooja [1 ]
Dietz, Laura [1 ]
机构
[1] Univ New Hampshire, Durham, NH 03824 USA
来源
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III | 2023年 / 13982卷
基金
美国国家科学基金会;
关键词
Entity retrieval; Entity embeddings; Knowledge graphs;
D O I
10.1007/978-3-031-28241-6_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Graph embeddings model semantic and structural knowledge of entities in the context of the Knowledge Graph. A nascent research direction has been to study the utilization of such graph embeddings for the IR-centric task of entity ranking. In this work, we replicate the GEEER study of Gerritse et al. [9] which demonstrated improvements of Wiki2Vec embeddings on entity ranking tasks on the DBpediaV2 dataset. We further extend the study by exploring additional state-of-the-art entity embeddings ERNIE [27] and E-BERT [19], and by including another test collection, TREC CAR, with queries not about person, location, and organization entities. We confirm the finding that entity embeddings are beneficial for the entity ranking task. Interestingly, we find that Wiki2Vec is competitive with ERNIE and E-BERT. Our code and data to aid reproducibility and further research is available at https://github.com/poojahoza/E3R- Replicability.
引用
收藏
页码:117 / 131
页数:15
相关论文
共 27 条
  • [1] [Anonymous], 2012, Proceedings of the 21st International Conference on World Wide Web, WWW'12, page, DOI 10.1145/2187836.2187855
  • [2] Query Modeling for Entity Search Based on Terms, Categories, and Examples
    Balog, Krisztian
    Bron, Marc
    De Rijke, Maarten
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2011, 29 (04)
  • [3] Balog K, 2010, LECT NOTES COMPUT SC, V5993, P319, DOI 10.1007/978-3-642-12275-0_29
  • [4] Bordes A., 2013, ADV NEURAL INFORM PR, V26, P2787, DOI DOI 10.5555/2999792.2999923
  • [5] Bron Marc, 2013, Advances in Information Retrieval. 35th European Conference on IR Research, ECIR 2013. Proceedings, P392, DOI 10.1007/978-3-642-36973-5_33
  • [6] Entity Query Feature Expansion using Knowledge Base Links
    Dalton, Jeffrey
    Dietz, Laura
    Allan, James
    [J]. SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 365 - 374
  • [7] ENT Rank: Retrieving Entities for Topical Information Needs through Entity-Neighbor-Text Relations
    Dietz, Laura
    [J]. PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 215 - 224
  • [8] Dietz Laura., 2018, P TEXT RETRIEVAL C T
  • [9] Gerritse Emma J., 2020, Advances in Information Retrieval, 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12035), P97, DOI 10.1007/978-3-030-45439-5_7
  • [10] Exploiting the category structure of Wikipedia for entity ranking
    Kaptein, Rianne
    Kamps, Jaap
    [J]. ARTIFICIAL INTELLIGENCE, 2013, 194 : 111 - 129