Data-driven quadratic stabilization and LQR control of LTI systems

被引:10
|
作者
Dai, Tianyu [1 ]
Sznaier, Mario [1 ]
机构
[1] Northeastern Univ, ECE Dept, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Data-driven control; Robust control; Quadratic stability; Semi-definite programming; ROBUST; POLYNOMIALS;
D O I
10.1016/j.automatica.2023.111041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a framework to solve the data-driven quadratic stabilization (DDQS) and the data-driven linear quadratic regulator (DDLQR) problems for both continuous and discrete-time systems. Given noisy input/state measurements and a few priors, we aim to find a state feedback controller guaranteed to quadratically stabilize all systems compatible with the a-priori information and the experimental data. In principle, finding such a controller is a non-convex robust optimization problem. Our main result shows that, by exploiting duality, the problem can be recast into a convex, albeit infinite-dimensional, functional Linear Program. To address the computational complexity entailed in solving this problem, we show that a sequence of increasingly tight finite dimensional semi-definite relaxations can be obtained using sum-of-squares and Putinar's Positivstellensatz arguments. Finally, we show that these arguments can also be used to find controllers that minimize a worst-case (over all plants in the consistency set) closed-loop H2 cost. The effectiveness of the proposed algorithm is illustrated through comparisons against existing data-driven methods that handle pound infinity bounded noise.(c) 2023 Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A data-driven approach to robust control of multivariable systems by convex optimization
    Karimi, Alireza
    Kammer, Christoph
    AUTOMATICA, 2017, 85 : 227 - 233
  • [22] Online Data-Driven Control of Nonlinear Systems Using Semidefinite Programming
    Bozza, Augusto
    Martin, Tim
    Cavone, Graziana
    Carli, Raffaele
    Dotoli, Mariagrazia
    Allgoewer, Frank
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3189 - 3194
  • [23] Data-driven Linear Quadratic Regulation via Semidefinite Programming
    Rotulo, Monica
    De Persis, Claudio
    Tesi, Pietro
    IFAC PAPERSONLINE, 2020, 53 (02): : 3995 - 4000
  • [24] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [25] Data-Driven Control for Linear Discrete-Time Delay Systems
    Rueda-Escobedo, Juan G.
    Fridman, Emilia
    Schiffer, Johannes
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3321 - 3336
  • [26] Data-driven asymptotic stabilization for discrete-time nonlinear systems
    Li, Yongqiang
    Hou, Zhongsheng
    SYSTEMS & CONTROL LETTERS, 2014, 64 : 79 - 85
  • [27] Data-Driven Control of LVDC Network Converters: Active Load Stabilization
    Ruiz-Martinez, Omar F.
    Mayo-Maldonado, Jonathan C.
    Escobar, Gerardo
    Frias-Araya, Benjamin A.
    Valdez-Resendiz, Jesus E.
    Rosas-Caro, Julio C.
    Rapisarda, Paolo
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (03) : 2182 - 2194
  • [28] Direct Data-Driven Control of Linear Time-Varying Systems
    Nortmann, Benita
    Mylvaganam, Thulasi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 4888 - 4895
  • [29] Designing Experiments for Data-Driven Control of Nonlinear Systems
    De Persis, Claudio
    Tesi, Pietro
    IFAC PAPERSONLINE, 2021, 54 (09): : 285 - 290
  • [30] Data-Driven Safe Control of Stochastic Nonlinear Systems
    Esmaeili, Babak
    Modares, Hamidreza
    IFAC PAPERSONLINE, 2024, 58 (28): : 540 - 545