Data-driven quadratic stabilization and LQR control of LTI systems

被引:10
|
作者
Dai, Tianyu [1 ]
Sznaier, Mario [1 ]
机构
[1] Northeastern Univ, ECE Dept, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Data-driven control; Robust control; Quadratic stability; Semi-definite programming; ROBUST; POLYNOMIALS;
D O I
10.1016/j.automatica.2023.111041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a framework to solve the data-driven quadratic stabilization (DDQS) and the data-driven linear quadratic regulator (DDLQR) problems for both continuous and discrete-time systems. Given noisy input/state measurements and a few priors, we aim to find a state feedback controller guaranteed to quadratically stabilize all systems compatible with the a-priori information and the experimental data. In principle, finding such a controller is a non-convex robust optimization problem. Our main result shows that, by exploiting duality, the problem can be recast into a convex, albeit infinite-dimensional, functional Linear Program. To address the computational complexity entailed in solving this problem, we show that a sequence of increasingly tight finite dimensional semi-definite relaxations can be obtained using sum-of-squares and Putinar's Positivstellensatz arguments. Finally, we show that these arguments can also be used to find controllers that minimize a worst-case (over all plants in the consistency set) closed-loop H2 cost. The effectiveness of the proposed algorithm is illustrated through comparisons against existing data-driven methods that handle pound infinity bounded noise.(c) 2023 Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Data-Driven Quadratic Stabilization of Continuous LTI Systems
    Dai, Tianyu
    Sznaier, Mario
    Solvas, Biel Roig
    IFAC PAPERSONLINE, 2020, 53 (02): : 3965 - 3970
  • [2] Data-Driven LQR Control Design
    Goncalves da Silva, Gustavo R.
    Bazanella, Alexandre S.
    Lorenzini, Charles
    Campestrini, Luciola
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 180 - 185
  • [3] On data-driven stabilization of systems with nonlinearities satisfying quadratic constraints
    Luppi, Alessandro
    De Persis, Claudio
    Tesi, Pietro
    SYSTEMS & CONTROL LETTERS, 2022, 163
  • [4] Fast Data-Driven Predictive Control for LTI Systems: A Randomized Approach
    Kedia, Vatsal
    George, Sneha Susan
    Chakraborty, Debraj
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3416 - 3421
  • [5] Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data
    Guo, Meichen
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4210 - 4217
  • [6] Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) : 909 - 924
  • [7] A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems
    Janssens, Pieter
    Pipeleers, Goele
    Swevers, Jan
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (02) : 546 - 551
  • [8] Data-driven, robust output regulation in finite time for LTI systems
    de Carolis, Giovanni
    Galeani, Sergio
    Sassano, Mario
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (18) : 5997 - 6015
  • [9] Data-Driven Robust Stabilization with Robust DOA Enlargement for Nonlinear Systems
    Lu, Chaolun
    Li, Yongqiang
    Hou, Zhongsheng
    Feng, Yuanjing
    Feng, Yu
    Chi, Ronghu
    Bu, Xuhui
    IFAC PAPERSONLINE, 2020, 53 (02): : 5877 - 5882
  • [10] Practical Stabilization of Switched Affine Systems: Model and Data-Driven Conditions
    Seuret, Alexandre
    Albea, Carolina
    Gordillo, Francisco
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1628 - 1633