Improved growth estimate of infinite time blowup solution for a semilinear hyperbolic equation with logarithmic nonlinearity

被引:9
作者
Han, Jiangbo [1 ]
Xu, Runzhang [1 ]
Yang, Chao [1 ,2 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
Infinite time blowup; Growth estimate; Logarithmic nonlinearity; Potential well; Hyperbolic equation; GLOBAL EXISTENCE; SOLITONS; MODEL;
D O I
10.1016/j.aml.2023.108670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short paper, we give an improved estimate of the infinite time blowup solu-tion for the semilinear wave equation with logarithmic nonlinearity. Comparing the previous work, this improved growth estimate not only provides the information about the relationship between the power of the nonlinearity and the growth, but also gives a faster growth estimate. The proof of the main conclusions is carried out at the negative initial energy level, the sub-critical initial energy level, the critical initial energy level and the arbitrary positive initial energy level.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Global well-posedness of logarithmic Keller-Segel type systems [J].
Ahn, Jaewook ;
Kang, Kyungkeun ;
Lee, Jihoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 :185-211
[2]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[3]   GAUSSONS - SOLITONS OF THE LOGARITHMIC SCHRODINGER EQUATION [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
PHYSICA SCRIPTA, 1979, 20 (3-4) :539-544
[4]   Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media [J].
Buljan, H ;
Siber, A ;
Soljacic, M ;
Schwartz, T ;
Segev, M ;
Christodoulides, DN .
PHYSICAL REVIEW E, 2003, 68 (03) :6
[5]  
Cazenave T., 1980, Annales de la Faculte des Sciences de Toulouse, V2, P21
[6]  
De Martino S, 2003, EUROPHYS LETT, V63, P472, DOI 10.1209/epl/i2003-00547-6
[7]   Unified model for partially coherent solitons in logarithmically nonlinear media [J].
Królikowski, W ;
Edmundson, D ;
Bang, O .
PHYSICAL REVIEW E, 2000, 61 (03) :3122-3126
[8]   Global existence and blow up of solutions for pseudo -parabolic equation with singular potential [J].
Lian, Wei ;
Wang, Juan ;
Xu, Runzhang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) :4914-4959
[9]   Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations [J].
Lian, Wei ;
Radulescu, Vicentiu D. ;
Xu, Runzhang ;
Yang, Yanbing ;
Zhao, Nan .
ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) :589-611
[10]   Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity [J].
Lian, Wei ;
Ahmed, Md Salik ;
Xu, Runzhang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 :239-257