Topological quantum phase transition of nickelocene on Cu(100)

被引:3
|
作者
Blesio, German G. [1 ]
Zitko, Rok [1 ,2 ]
Manuel, Luis O. [3 ,4 ]
Aligia, Armando A. [5 ,6 ]
机构
[1] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Nacl Rosario, Inst Fis Rosario CONICET, RA-2000 Rosario, Argentina
[4] Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, RA-2000 Rosario, Argentina
[5] Ctr Atom Bariloche, Inst Nanociencia & Nanotecnol CNEA CONICET, RA-8400 San Carlos De Bariloche, Argentina
[6] Inst Balseiro, RA-8400 San Carlos De Bariloche, Argentina
来源
SCIPOST PHYSICS | 2023年 / 14卷 / 03期
关键词
FRIEDEL SUM-RULE; SINGLE-MOLECULE; RENORMALIZATION-GROUP; SYSTEM; SURFACE; MODEL;
D O I
10.21468/SciPostPhys.14.3.042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Local quantum phase transitions driven by Kondo correlations have been theoretically proposed in several magnetic nanosystems; however, clear experimental signatures are scant. Modeling a nickelocene molecule on a Cu(100) substrate as a two-orbital Anderson impurity with single-ion anisotropy coupled to two conduction bands, we find that recent scanning tunneling spectra reveal the existence of a topological quantum phase transition from the usual local Fermi liquid with high zero-bias conductance to a non-Landau Fermi liquid, characterized by a non-trivial quantized Luttinger integral, with a small conductance. The effects of intermediate valence, finite temperature, and structural relaxation of the molecule position allow us to explain the different observed behaviors.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Big bang as a topological quantum phase transition
    Klinkhamer, F. R.
    Volovik, G. E.
    PHYSICAL REVIEW D, 2022, 105 (08)
  • [2] Tuning the quantum phase transition of an ultrathin magnetic topological insulator
    Shafiei, Mohammad
    Fazileh, Farhad
    Peeters, Francois M.
    V. Milosevic, Milorad
    PHYSICAL REVIEW MATERIALS, 2024, 8 (07):
  • [3] Topological Frustration can modify the nature of a Quantum Phase Transition
    Maric, Vanja
    Torre, Gianpaolo
    Franchini, Fabio
    Giampaolo, Salvatore Marco
    SCIPOST PHYSICS, 2022, 12 (02):
  • [4] Learning topological defects formation with neural networks in a quantum phase transition
    Shi, Han-Qing
    Zhang, Hai-Qing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (05)
  • [5] Signatures of a Pressure-Induced Topological Quantum Phase Transition in BiTeI
    Xi, Xiaoxiang
    Ma, Chunli
    Liu, Zhenxian
    Chen, Zhiqiang
    Ku, Wei
    Berger, H.
    Martin, C.
    Tanner, D. B.
    Carr, G. L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (15)
  • [6] Anisotropy-driven topological quantum phase transition in magnetic impurities
    Blesio, G. G.
    Manuel, L. O.
    Aligia, A. A.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2024, 4 (04):
  • [7] Topology-Driven Magnetic Quantum Phase Transition in Topological Insulators
    Zhang, Jinsong
    Chang, Cui-Zu
    Tang, Peizhe
    Zhang, Zuocheng
    Feng, Xiao
    Li, Kang
    Wang, Li-li
    Chen, Xi
    Liu, Chaoxing
    Duan, Wenhui
    He, Ke
    Xue, Qi-Kun
    Ma, Xucun
    Wang, Yayu
    SCIENCE, 2013, 339 (6127) : 1582 - 1586
  • [8] Glass transition as a topological phase transition
    Vasin, M. G.
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [9] The Mott transition as a topological phase transition
    Sen, Sudeshna
    Wong, Patrick J.
    Mitchell, Andrew K.
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [10] NV-center-based digital quantum simulation of a quantum phase transition in topological insulators
    Ju, Chenyong
    Lei, Chao
    Xu, Xiangkun
    Culcer, Dimitrie
    Zhang, Zhenyu
    Du, Jiangfeng
    PHYSICAL REVIEW B, 2014, 89 (04)