Diagonal quartic surfaces with a Brauer-Manin obstruction

被引:2
作者
Santens, Tim [1 ]
机构
[1] Katholieke Univ Leuven, Dept wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium
关键词
quartic surfaces; rational points; Brauer-Manin obstruction; Artin L-series; HASSE PRINCIPLE; POINTS; NUMBER;
D O I
10.1112/S0010437X22007916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the quantity of diagonal quartic surfaces a(0)X(0)(4) + a(1)X(1)(4) + a(2)X(2)(4) + a(3)X(3)(4) = 0 which have a Brauer-Manin obstruction to the Hasse principle. We are able to find an asymptotic formula for the quantity of such surfaces ordered by height. The proof uses a generalization of a method of Heath-Brown on sums over linked variables. We also show that there exists no uniform formula for a generic generator in this family.
引用
收藏
页码:659 / 710
页数:53
相关论文
共 39 条
[31]  
Serre J.-P., 1977, LINEAR REPRESENTATIO, V42
[32]  
Serre Jean-Pierre, 2003, University Lecture Series, V28
[33]  
Serre Jean-Pierre., 2012, Chapman & Hall/CRC Research Notes in Mathematics, V11
[34]  
Skorobogatov A., 2009, DIAGONAL QUARTIC SUR, V6
[35]  
Sofos E, 2021, ANN I FOURIER, V71, P679
[36]   Arithmetic of diagonal quartic surfaces, II [J].
Swinnerton-Dyer, P .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 80 :513-544
[37]  
Tenenbaum G., 1995, INTRO ANAL PROBABILI, V46
[38]   On the Brauer group of affine diagonal quadrics [J].
Uematsu, Tetsuya .
JOURNAL OF NUMBER THEORY, 2016, 163 :146-158
[39]   ON THE BRAUER GROUP OF DIAGONAL CUBIC SURFACES [J].
Uematsu, Tetsuya .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (02) :677-701