Molecular and kinetic properties of copper nitrite reductase from Sinorhizobium meliloti 2011 upon substituting the interfacial histidine ligand coordinated to the type 2 copper active site for glycine

被引:5
作者
Dure, Andrea B. [1 ,2 ]
Cristaldi, Julio C. [1 ,2 ,3 ,4 ]
Cuasapud, Lorieth A. Guevara [1 ,2 ]
Dalosto, Sergio D. [5 ]
Rivas, Maria Gabriela [1 ,2 ]
Ferroni, Felix M. [1 ,2 ]
Gonzalez, Pablo J. [1 ,2 ]
Montich, Guillermo G. [3 ,4 ]
Brondino, Carlos D. [1 ,2 ]
机构
[1] Univ Nacl Litoral, Fac Bioquim & Ciencias Biol, Dept Fis, S3000ZAA, Santa Fe, Argentina
[2] Consejo Nacl Invest Cient & Tecn, S3000ZAA, Santa Fe, Argentina
[3] Univ Nacl Cordoba, Fac Ciencias Quim, Dept Quim Biolo Ranwel Caputto, Haya Torre & Medina Allende 5000, Cordoba, Argentina
[4] Univ Nacl Cordoba, Ctr Invest Quim Biol Cordoba CIQUIB, CONICET, Cordoba, Argentina
[5] UNL, CONICET, Inst Fis Litoral, Guemes 3450,S3000GLN, Santa Fe, Argentina
关键词
Nitrite reductase; Copper; Enzyme kinetic; EPR; FTIR; Computational calculation; X-RAY-STRUCTURE; ELECTRON-DONOR; PROTEIN; SIMULATION; PSEUDOAZURIN; STABILITY; EXCHANGE; INSIGHTS; CHANNEL; BINDING;
D O I
10.1016/j.jinorgbio.2023.112155
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide in the denitrifier Sino-rhizobium meliloti 2011 (SmNirK), a microorganism used as bioinoculant in alfalfa seeds. Wild type SmNirK is a homotrimer that contains two copper centers per monomer, one of type 1 (T1) and other of type 2 (T2). T2 is at the interface of two monomers in a distorted square pyramidal coordination bonded to a water molecule and three histidine side chains, H171 and H136 from one monomer and H342 from the other. We report the mo-lecular, catalytic, and spectroscopic properties of the SmNirK variant H342G, in which the interfacial H342 T2 ligand is substituted for glycine. The molecular properties of H342G are similar to those of wild type SmNirK. Fluorescence-based thermal shift assays and FTIR studies showed that the structural effect of the mutation is only marginal. However, the kinetic reaction with the physiological electron donor was significantly affected, which showed a similar to 100-fold lower turnover number compared to the wild type enzyme. UV-Vis, EPR and FTIR studies complemented with computational calculations indicated that the drop in enzyme activity are mainly due to the void generated in the protein substrate channel by the point mutation. The main structural changes involve the filling of the void with water molecules, the direct coordination to T2 copper ion of the second sphere aspartic acid ligand, a key residue in catalysis and nitrite sensing in NirK, and to the loss of the 3 N-O coordination of T2.
引用
收藏
页数:10
相关论文
共 51 条
[1]   THE STRUCTURE OF COPPER-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT 5 PH VALUES, WITH NO2- BOUND AND WITH TYPE-II COPPER DEPLETED [J].
ADMAN, ET ;
GODDEN, JW ;
TURLEY, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27458-27474
[2]   PROTEIN DATABASE SEARCHES FOR MULTIPLE ALIGNMENTS [J].
ALTSCHUL, SF ;
LIPMAN, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) :5509-5513
[3]   Structures of protein-protein complexes involved in electron transfer [J].
Antonyuk, Svetlana V. ;
Han, Cong ;
Eady, Robert R. ;
Hasnain, S. Samar .
NATURE, 2013, 496 (7443) :123-127
[4]   The foldon substructure of staphylococcal nuclease [J].
Bedard, Sabrina ;
Mayne, Leland C. ;
Peterson, Ronald W. ;
Wand, A. Joshua ;
Englander, S. Walter .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 376 (04) :1142-1154
[5]   Demonstration of Proton-coupled Electron Transfer in the Copper-containing Nitrite Reductases [J].
Brenner, Sibylle ;
Heyes, Derren J. ;
Hay, Sam ;
Hough, Michael A. ;
Eady, Robert R. ;
Hasnain, S. Samar ;
Scrutton, Nigel S. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (38) :25973-25983
[6]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[7]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[8]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[9]   Study of the Cys-His bridge electron transfer pathway in a copper-containing nitrite reductase by site-directed mutagenesis, spectroscopic, and computational methods [J].
Cristaldi, Julio C. ;
Gomez, Maria C. ;
Gonzalez, Pablo J. ;
Ferroni, Felix M. ;
Dalosto, Sergio D. ;
Rizzi, Alberto C. ;
Rivas, Maria G. ;
Brondino, Carlos D. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2018, 1862 (03) :752-760
[10]   Monitoring structural stability of trypsin inhibitor at the submolecular level by amide-proton exchange using Fourier transform infrared spectroscopy: A test case for more general application [J].
deJongh, HHJ ;
Goormaghtigh, E ;
Ruysschaert, JM .
BIOCHEMISTRY, 1997, 36 (44) :13593-13602