Simple model for the bottleneck effect in isotropic turbulence based on Kolmogorov's hypotheses

被引:3
作者
Su, Hao [1 ]
Yang, Yue [1 ,2 ]
Pope, Stephen B. [3 ]
机构
[1] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Peking Univ, HEDPS CAPT, Beijing 100871, Peoples R China
[3] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ENERGY-SPECTRUM; NUMERICAL SIMULATIONS; BOUNDARY-LAYERS; RANGE; CONSTANT;
D O I
10.1103/PhysRevFluids.8.014603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a simple model for the bottleneck effect in homogeneous isotropic turbu-lence as a bump in the compensated energy spectrum, based on Kolmogorov's hypotheses (of 1941 and 1962). The model of the longitudinal structure function consists of two quadratic functions representing large-and small-scale motions. The model parameters are derived from the asymptotic behavior of the structure function. The Kolmogorov and intermittency constants are fitted from direct numerical simulation (DNS) and experimental data. From the model, the height of the spectral bump in the compensated spectrum has a power-law R-0.0426 lambda , and the bump location scaled by the Kolmogorov scale is 0.153, which generally agree with various DNS results at moderate and large Reynolds numbers R lambda. Moreover, we derive that the incorporation of the intermittency exponent into the model leads to the decaying power law of the bump height with R lambda.
引用
收藏
页数:12
相关论文
共 37 条
  • [1] Finite Reynolds number effect and the 4/5 law
    Antonia, R. A.
    Tang, S. L.
    Djenidi, L.
    Zhou, Y.
    [J]. PHYSICAL REVIEW FLUIDS, 2019, 4 (08)
  • [2] Collapse of the turbulent dissipative range on Kolmogorov scales
    Antonia, R. A.
    Djenidi, L.
    Danaila, L.
    [J]. PHYSICS OF FLUIDS, 2014, 26 (04)
  • [3] PRESSURE FLUCTUATIONS IN ISOTROPIC TURBULENCE
    BATCHELOR, GK
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1951, 47 (02): : 359 - 374
  • [4] Karman-Howarth solutions of homogeneous isotropic turbulence
    Djenidi, L.
    Antonia, R. A.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 932
  • [5] Bottleneck effect in three-dimensional turbulence simulations
    Dobler, W
    Haugen, NEL
    Yousef, TA
    Brandenburg, A
    [J]. PHYSICAL REVIEW E, 2003, 68 (02): : 8
  • [6] The bottleneck effect and the Kolmogorov constant in isotropic turbulence
    Donzis, D. A.
    Sreenivasan, K. R.
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 657 : 171 - 188
  • [7] BOTTLENECK PHENOMENON IN DEVELOPED TURBULENCE
    FALKOVICH, G
    [J]. PHYSICS OF FLUIDS, 1994, 6 (04) : 1411 - 1414
  • [8] Falkovich G., 1990, SOV PHYS JETP, V71, P1085
  • [9] Hyperviscosity, galerkin truncation, and bottlenecks in turbulence
    Frisch, Uriel
    Kurien, Susan
    Pandit, Rahul
    Pauls, Walter
    Ray, Samriddhi Sankar
    Wirth, Achim
    Zhu, Jian-Zhou
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [10] Generalized Batchelor functions of isotropic turbulence
    Gravanis, Elias
    Akylas, Evangelos
    [J]. PHYSICS OF FLUIDS, 2015, 27 (01)