Role of artificial intelligence-guided esophagogastroduodenoscopy in assessing the procedural completeness and quality

被引:1
作者
Goenka, Mahesh Kumar [1 ]
Afzalpurkar, Shivaraj [1 ]
Jejurikar, Saurabh [2 ]
Rodge, Gajanan Ashokrao [1 ]
Tiwari, Awanish [1 ]
机构
[1] Apollo Multispecial Hosp, Inst Gastrosci & Liver, Day Care Bldg,4th Floor,AMHL,EM Bypass Rd, Kolkata 700054, India
[2] Endovision Ltd, Hong Kong, Peoples R China
关键词
Artificial intelligence; Completeness; Esophagogastroduodenoscopy; Procedural quality; UPPER GASTROINTESTINAL ENDOSCOPY; SCREENING EXAMINATION; BRITISH SOCIETY; INDICATORS; DIAGNOSIS; FUTURE;
D O I
10.1007/s12664-022-01294-9
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and AimsThe quality of esophagogastroduodenoscopy (EGD) can have great impact on the detection of esophageal and gastric lesions, including malignancies. The aim of the study is to investigate the use of artificial intelligence (AI) during EGD by the endoscopists-in-training so that a real-time feedback can be provided, ensuring compliance to a pre-decided protocol for examination.MethodsThis is an observational pilot study. The videos of the EGD procedure performed between August 1, 2021, and September 30, 2021, were prospectively analyzed using AI system. The assessment of completeness of the procedure was done based on the visualizsation of pre-defined 29 locations. Endoscopists were divided into two categories - whether they are in the training period (category A) or have competed their endoscopy training (category B).ResultsA total of 277 procedures, which included 114 category-A and 163 category-B endoscopists, respectively, were included. Most commonly covered areas by the endoscopists were greater curvature of antrum (97.47%), second part of duodenum (96.75%), other parts of antrum such as the anterior, lesser curvature and the posterior aspect (96.75%, 94.95%, and 94.22%, respectively). Commonly missed or inadequately seen areas were vocal cords (99.28%), epiglottis (93.14%) and posterior, anterior, and lateral aspect of incisura (78.70%, 73.65%, and 73.53%, respectively). The good quality procedures were done predominantly by categoryB endoscopists (88.68% vs. 11.32%, p < 0.00001).ConclusionAI can play an important role in assessing the quality and completeness of EGD and can be a part of training of endoscopy in future.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 31 条
[1]   Artificial intelligence in gastrointestinal endoscopy: The future is almost here [J].
Alagappan, Muthuraman ;
Brown, Jeremy R. Glissen ;
Mori, Yuichi ;
Berzin, Tyler M. .
WORLD JOURNAL OF GASTROINTESTINAL ENDOSCOPY, 2018, 10 (10) :239-249
[2]  
[Anonymous], 2015, Medicine
[3]   Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis [J].
Arribas, Julia ;
Antonelli, Giulio ;
Frazzoni, Leonardo ;
Fuccio, Lorenzo ;
Ebigbo, Alanna ;
van der Sommen, Fons ;
Ghatwary, Noha ;
Palm, Christoph ;
Coimbra, Miguel ;
Renna, Francesco ;
Bergman, J. J. G. H. M. ;
Sharma, Prateek ;
Messmann, Helmut ;
Hassan, Cesare ;
Dinis-Ribeiro, Mario J. .
GUT, 2021, 70 (08) :1458-1468
[4]   Quality standards in upper gastrointestinal endoscopy: a position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS) [J].
Beg, Sabina ;
Ragunath, Krish ;
Wyman, Andrew ;
Banks, Matthew ;
Trudgill, Nigel ;
Pritchard, Mark D. ;
Riley, Stuart ;
Anderson, John ;
Griffiths, Helen ;
Bhandari, Pradeep ;
Kaye, Phillip ;
Veitch, Andrew .
GUT, 2017, 66 (11) :1886-1899
[5]   Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative [J].
Bisschops, Raf ;
Areia, Miguel ;
Coron, Emmanuel ;
Dobru, Daniela ;
Kaskas, Bernd ;
Kuvaev, Roman ;
Pech, Oliver ;
Ragunath, Krish ;
Weusten, Bas ;
Familiari, Pietro ;
Domagk, Dirk ;
Valori, Roland ;
Kaminski, Michal F. ;
Spada, Cristiano ;
Bretthauer, Michael ;
Bennett, Cathy ;
Senore, Carlo ;
Dinis-Ribeiro, Mario ;
Rutter, Matthew D. .
ENDOSCOPY, 2016, 48 (09) :843-864
[6]   Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video) [J].
Cai, Shi-Lun ;
Li, Bing ;
Tan, Wei-Min ;
Niu, Xue-Jing ;
Yu, Hon-Ho ;
Yao, Li-Qing ;
Zhou, Ping-Hong ;
Yan, Bo ;
Zhong, Yun-Shi .
GASTROINTESTINAL ENDOSCOPY, 2019, 90 (05) :745-+
[7]   Accuracy of laryngeal examination during upper gastrointestinal endoscopy for premalignancy screening: Prospective study in patients with and without reflux symptoms [J].
Cammarota, G ;
Galli, J ;
Agostino, S ;
De Corso, E ;
Rigante, M ;
Cianci, R ;
Cesaro, P ;
Nista, EC ;
Candelli, M ;
Gasbarrini, A ;
Gasbarrini, G .
ENDOSCOPY, 2006, 38 (04) :376-381
[8]   An Asian consensus on standards of diagnostic upper endoscopy for neoplasia [J].
Chiu, Philip Wai Yan ;
Uedo, Noriya ;
Singh, Rajvinder ;
Gotoda, Takuji ;
Ng, Enders Kwok Wai ;
Yao, Kenshi ;
Ang, Tiing Leong ;
Ho, Shiaw Hooi ;
Kikuchi, Daisuke ;
Yao, Fang ;
Pittayanon, Rapat ;
Goda, Kenichi ;
Lau, James Y. W. ;
Tajiri, Hisao ;
Inoue, Haruhiro .
GUT, 2019, 68 (02) :186-197
[9]   Quality indicators for esophagogastroduodenoscopy [J].
Cohen, J ;
Safdi, MA ;
Deal, SE ;
Baron, TH ;
Chak, A ;
Hoffman, B ;
Jacobson, BC ;
Mergener, K ;
Petersen, BT ;
Petrini, JL ;
Rex, DK ;
Faigel, DO ;
Pike, IM .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2006, 101 (04) :886-891
[10]   The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy [J].
de Groof, Jeroen ;
van der Sommen, Fons ;
van der Putten, Joost ;
Struyvenberg, Maarten R. ;
Zinger, Sveta ;
Curvers, Muter L. ;
Pech, Oliver ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (04) :538-547