Plasma derived extracellular vesicle biomarkers of microglia activation in an experimental stroke model

被引:13
作者
Roseborough, A. D. [1 ]
Myers, S. J. [1 ]
Khazaee, R. [2 ,3 ]
Zhu, Y. [1 ]
Zhao, L. [1 ]
Iorio, E. [4 ]
Elahi, F. M. [4 ,5 ,6 ]
Pasternak, S. H. [5 ,6 ,7 ]
Whitehead, S. N. [1 ]
机构
[1] Univ Western Ontario, Schulich Sch Med & Dent, Dept Anat & Cell Biol, Vulnerable Brain Lab, 458 Med Sci Bldg, London, ON N6A 3K, Canada
[2] Univ Western Ontario, Biotron Integrated Microscopy Facil, London, ON, Canada
[3] Univ Western Ontario, Dept Biol, London, ON, Canada
[4] Univ Calif San Francisco, Weill Inst Neurosci, San Francisco, CA USA
[5] Icahn Sch Med Mt Sinai, New York, NY USA
[6] Univ Western Ontario, Schulich Sch Med & Dent, Dept Clin Neurol Sci, London, ON, Canada
[7] Univ Western Ontario, Robarts Res Inst, Schulich Sch Med & Dent, London, ON, Canada
基金
加拿大健康研究院;
关键词
Microglia; Stroke; Extracellular vesicle; MHC CLASS-II; FOCAL CEREBRAL-ISCHEMIA; IN-VIVO; EMBOLIC STROKE; CHRONIC PHASE; MACROPHAGES; EXOSOMES; INJURY; EXPRESSION; DYNAMICS;
D O I
10.1186/s12974-023-02708-x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Chronic microglia activation post-stroke is associated with worse neurological and cognitive outcomes. However, measurement of microglia activation in vivo is currently limited. Plasma derived extracellular vesicles (EVs) are cell-specific indicators that may allow for non-invasive measurement of microglia phenotype. The aim of this study was to identify activation-state specific microglia EVs (MEVs) in vitro followed by validation in an experimental stroke model. Following pro-inflammatory activation, MEVs contain the microglia protein TMEM119 alongside increased expression of the Toll-like receptor 4 co-receptor CD14. Immunoprecipitation followed by fluorescent nanoparticle tracking analysis (ONI Nanoimager) was used to confirm the isolation of TMEM119(+)/CD14(+) EVs from rat plasma. Electron microscopy confirmed that TMEM119 and CD14 localize to the MEV membrane. To model ischemia, plasma was collected from 3-month wildtype Fischer344 rats prior to, 7 and 28 days after endothelin-1 or saline injection into the dorsal right striatum. Fluorescently labelled MEVs were directly measured in the plasma using nanoflow cytometry (Apogee A60 Microplus). We report a significant increase in circulating TMEM119(+)/CD14(+) EVs 28-days post-stroke in comparison to baseline levels and saline-injected rats, which correlated weakly with stroke volume. TMEM119(+)/MHC-II+ EVs were also increased post-stroke in comparison to baseline and saline-injected animals. This study is the first to describe an EV biomarker of activated microglia detected directly in plasma following stroke and represents a future tool for the measurement of microglia activity in vivo.
引用
收藏
页数:13
相关论文
共 70 条
  • [1] Endothelial-derived plasma exosome proteins in Alzheimer's disease angiopathy
    Abner, Erin L.
    Elahi, Fanny M.
    Jicha, Gregory A.
    Mustapic, Maja
    Al-Janabi, Omar
    Kramer, Joel H.
    Kapogiannis, Dimitrios
    Goetzl, Edward J.
    [J]. FASEB JOURNAL, 2020, 34 (04) : 5967 - 5974
  • [2] Isolation, culture, and downstream characterization of primary microglia and astrocytes from adult rodent brain and spinal cord
    Agalave, Nilesh M.
    Lane, Brandon T.
    Mody, Prapti H.
    Szabo-Pardi, Thomas A.
    Burton, Michael D.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2020, 340
  • [3] TSPO PET detects acute neuroinflammation but not diffuse chronically activated MHCII microglia in the rat
    Al-Khishman, Nassir U.
    Qi, Qi
    Roseborough, Austyn D.
    Levit, Alexander
    Allman, Brian L.
    Anazodo, Udunna C.
    Fox, Matthew S.
    Whitehead, Shawn N.
    Thiessen, Jonathan D.
    [J]. EJNMMI RESEARCH, 2020, 10 (01)
  • [4] Biomarker potential of brain-secreted extracellular vesicles in blood in Alzheimer's disease
    Badhwar, AmanPreet
    Haqqani, Arsalan S.
    [J]. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2020, 12 (01)
  • [5] Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes
    Baxter, Paul S.
    Dando, Owen
    Emelianova, Katie
    He, Xin
    McKay, Sean
    Hardingham, Giles E.
    Qiu, Jing
    [J]. CELL REPORTS, 2021, 34 (12):
  • [6] Towards PET imaging of the dynamic phenotypes of microglia
    Beaino, Wissam
    Janssen, Bieneke
    Vugts, Danielle J.
    de Vries, Helga E.
    Windhorst, Albert D.
    [J]. CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2021, 206 (03) : 282 - 300
  • [7] Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells
    Becker, Lev
    Liu, Ning-Chun
    Averill, Michelle M.
    Yuan, Wei
    Pamir, Nathalie
    Peng, Yufeng
    Irwin, Angela D.
    Fu, Xiaoyun
    Bornfeldt, Karin E.
    Heinecke, Jay W.
    [J]. PLOS ONE, 2012, 7 (03):
  • [8] The role of microglia and myeloid immune cells in acute cerebral ischemia
    Benakis, Corinne
    Garcia-Bonilla, Lidia
    Iadecola, Costantino
    Anrather, Josef
    [J]. FRONTIERS IN CELLULAR NEUROSCIENCE, 2015, 8
  • [9] New tools for studying microglia in the mouse and human CNS
    Bennett, Mariko L.
    Bennett, F. Chris
    Liddelow, Shane A.
    Ajami, Bahareh
    Zamanian, Jennifer L.
    Fernhoff, Nathaniel B.
    Mulinyawe, Sara B.
    Bohlen, Christopher J.
    Adil, Aykezar
    Tucker, Andrew
    Weissman, Irving L.
    Chang, Edward F.
    Li, Gordon
    Grant, Gerald A.
    Gephart, Melanie G. Hayden
    Barres, Ben A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (12) : E1738 - E1746
  • [10] Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions
    Beschorner, R
    Schluesener, HJ
    Gözalan, F
    Meyermann, R
    Schwab, JM
    [J]. JOURNAL OF NEUROIMMUNOLOGY, 2002, 126 (1-2) : 107 - 115