A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images

被引:62
|
作者
Alshmrani, Goram Mufarah M. [1 ]
Ni, Qiang [1 ]
Jiang, Richard [1 ]
Pervaiz, Haris [1 ]
Elshennawy, Nada M. [2 ]
机构
[1] Univ Lancaster, Sch Comp & Commutat, Lancaster LA1 4YW, England
[2] Tanta Univ, Fac Engn, Dept Comp & Control Engn, Tanta 31733, Egypt
基金
英国工程与自然科学研究理事会;
关键词
Pneumonia; Lung cancer; COVID-19; TB; Lung opac-ity; X-ray images; Deep learning; VGG19 +CNN; Multiclass diseases classification; NEURAL-NETWORK ENSEMBLE; HEART-DISEASE; RADIOGRAPHS; FRAMEWORK; COVID-19;
D O I
10.1016/j.aej.2022.10.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In 2019, the world experienced the rapid outbreak of the Covid-19 pandemic creating an alarming situation worldwide. The virus targets the respiratory system causing pneumonia with other symptoms such as fatigue, dry cough, and fever which can be mistakenly diagnosed as pneu-monia, lung cancer, or TB. Thus, the early diagnosis of COVID-19 is critical since the disease can provoke patients' mortality. Chest X-ray (CXR) is commonly employed in healthcare sector where both quick and precise diagnosis can be supplied. Deep learning algorithms have proved extraordi-nary capabilities in terms of lung diseases detection and classification. They facilitate and expedite the diagnosis process and save time for the medical practitioners. In this paper, a deep learning (DL) architecture for multi-class classification of Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is proposed. Tremendous CXR images of 3615 COVID-19, 6012 Lung opacity, 5870 Pneumonia, 20,000 lung cancer, 1400 tuberculosis, and 10,192 normal images were resized, normalized, and randomly split to fit the DL requirements. In terms of classification, we utilized a pre-trained model, VGG19 followed by three blocks of con-volutional neural network (CNN) as a feature extraction and fully connected network at the clas-sification stage. The experimental results revealed that our proposed VGG19 + CNN outperformed other existing work with 96.48 % accuracy, 93.75 % recall, 97.56 % precision, 95.62 % F1 score, and 99.82 % area under the curve (AUC). The proposed model delivered supe-rior performance allowing healthcare practitioners to diagnose and treat patients more quickly and efficiently.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).
引用
收藏
页码:923 / 935
页数:13
相关论文
共 50 条
  • [21] A lightweight deep learning architecture for the automatic detection of pneumonia using chest X-ray images
    Trivedi, Megha
    Gupta, Abhishek
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 5515 - 5536
  • [22] A New Approach Method for Multi Classification of Lung Diseases using X-Ray Images
    Heranurweni, Sri
    Nugroho, Andi Kuniawan
    Destyningtias, Budiani
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 468 - 474
  • [23] Classification of CXR Chest Diseases by Ensembling Deep Learning Models
    Nasser, Adnane Ait
    Akhloufi, Moulay A.
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2022), 2022, : 250 - 255
  • [24] Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI
    Ifty, Tanzina Taher
    Shafin, Saleh Ahmed
    Shahriar, Shoeb Mohammad
    Towhid, Tashfia
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [25] Deep Hierarchical Multi-label Classification of Chest X-ray Images
    Chen, Haomin
    Miao, Shun
    Xu, Daguang
    Hager, Gregory D.
    Harrison, Adam P.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 109 - 120
  • [26] Y Covid-19 Classification Using Deep Learning in Chest X-Ray Images
    Karhan, Zehra
    Akal, Fuat
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [27] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [28] Classification of Thoracic Abnormalities from Chest X-Ray Images with Deep Learning
    Nawaz, Usman
    Ashraf, Muhammad Ummar
    Iqbal, Muhammad Junaid
    Asaf, Muhammad
    Mir, Mariam Munsif
    Raza, Usman Ahmed
    Sharif, Bilal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (04) : 9 - 14
  • [29] Multi-Class Segmentation of Lung Immunofluorescence Confocal Images Using Deep Learning
    Isaka, Shu
    Kawanaka, Hiroharu
    Aronow, Bruce J.
    Prasath, V. B. Surya
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2362 - 2368
  • [30] Analyzing Chest X-Ray Lung Images Using Machine Learning
    Somasundaram, K.
    Raman, Ramakrishnan
    Meenakshi, R.
    Chirputkar, Abhijit
    CARDIOMETRY, 2022, (25): : 145 - 148