Penetration Fracture Mechanism of Tungsten-Fiber-Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite under High-Velocity Impact

被引:5
作者
Du, Chengxin [1 ]
Zhou, Feng [1 ]
Gao, Guangfa [1 ]
Du, Zhonghua [1 ]
Fu, Huameng [2 ]
Zhu, Zhengwang [2 ]
Cheng, Chun [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
[3] Ningbo Univ, Impact & Safety Engn, Ningbo 315211, Peoples R China
基金
英国科研创新办公室; 中国国家自然科学基金;
关键词
penetration fracture mode; tungsten-fiber-reinforced Zr-based bulk metallic glass matrix composite (WF/Zr-MG); impact velocity; bending and backflow; DEFORMATION-BEHAVIOR; STRAIN-RATES; FEM ANALYSIS; FAILURE;
D O I
10.3390/ma16010040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to adapt to the launch velocity of modern artillery, it is necessary to study the fracture mechanism of the high-velocity penetration of penetrators. Therefore, the penetration fracture mode of tungsten-fiber-reinforced Zr-based bulk metallic glass matrix composite (WF/Zr-MG) rods at a high velocity is studied. An experiment on WF/Zr-MG rods penetrating into rolled homogeneous armor steel (RHA) was carried out at 1470 similar to 1650 m/s. The experimental results show that the higher penetration ability of WF/Zr-MG rods not only results from their "self-sharpening" feature, but also due to the fact they have a longer quasi-steady penetration phase than tungsten alloy (WHA) rods. Above 1500 m/s, the penetration fracture mode of the WF/Zr-MG rod is the bending and backflow of tungsten fibers. Our theoretical calculation shows that the deformation mode of the Zr-based bulk metallic glass matrix (Zr-MG) is an important factor affecting the penetration fracture mode of the WF/Zr-MG rod. When the impact velocity increases from 1000 m/s to 1500 m/s, the deformation mode of Zr-MG changes from shear localization to non-Newtonian flow, leading to a change in the penetration fracture mode of the WF/Zr-MG rod from shear fracture to the bending and backflow of tungsten fibers.
引用
收藏
页数:12
相关论文
共 28 条
[1]   LONG-ROD PENETRATION, TARGET RESISTANCE, AND HYPERVELOCITY IMPACT [J].
ANDERSON, CE ;
LITTLEFIELD, DL ;
WALKER, JD .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1993, 14 (1-4) :1-12
[2]   AN EXAMINATION OF LONG-ROD PENETRATION [J].
ANDERSON, CE ;
WALKER, JD .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1991, 11 (04) :481-501
[3]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66
[4]   Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures [J].
Chen, Gang ;
Hao, Yifei ;
Chen, Xiaowei ;
Hao, Hong .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2017, 106 :110-119
[5]   Experimental study on WFeNiMo high-entropy alloy projectile penetrating semi-infinite steel target [J].
Chen, Hai-hua ;
Zhang, Xian-feng ;
Dai, Lan -hong ;
Liu, Chuang ;
Xiong, Wei ;
Tan, Meng-ting .
DEFENCE TECHNOLOGY, 2022, 18 (08) :1470-1482
[6]   Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites [J].
Chen, S. ;
Li, W. Q. ;
Zhang, L. ;
Fu, H. M. ;
Li, Z. K. ;
Zhu, Z. W. ;
Li, H. ;
Zhang, H. W. ;
Wang, A. M. ;
Wang, Y. D. ;
Zhang, H. F. .
COMPOSITES PART B-ENGINEERING, 2020, 199
[7]   Compressive mechanical properties and failure modes of Zr-based bulk metallic glass composites containing tungsten springs [J].
Chen, S. ;
Zhang, L. ;
Fu, H. M. ;
Li, Z. K. ;
Zhu, Z. W. ;
Li, H. ;
Zhang, H. W. ;
Wang, A. M. ;
Wang, Y. D. ;
Zhang, H. F. .
MATERIALS & DESIGN, 2018, 160 :652-660
[8]   Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J].
Chen, X. W. ;
Wei, L. M. ;
Li, J. C. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2015, 79 :102-116
[9]  
Chen X. W., 2012, EPJ Web of Conferences, V26, DOI 10.1051/epjconf/20122601049
[10]   Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J].
Conner, RD ;
Dandliker, RB ;
Scruggs, V ;
Johnson, WL .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2000, 24 (05) :435-444