A dynamical alternating direction method of multipliers for two-block optimization problems

被引:0
|
作者
Chao, Miantao [1 ]
Liu, Liqun [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamical system; Alternating direction method of multipliers; Lyapunov function; Convergence analysis; EVOLUTION-EQUATIONS; CONVEX; MINIMIZATION; CONVERGENCE; SYSTEMS; SUM;
D O I
10.1007/s11071-022-08174-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we propose a dynamical alternating direction method of multipliers (ADMM) for two-block separable optimization problems. The wellknown classical ADMM can be obtained after the time discretization of the dynamical system. Under suitable conditions, we prove that the trajectory asymptotically converges to a saddle point of the Lagrangian function of the problems. When the coefficient matrices in the constraint are the identity matrices, we prove the worst-case O (1/t ) convergence rate in ergodic sense.
引用
收藏
页码:6557 / 6583
页数:27
相关论文
共 50 条
  • [21] CONVERGENCE ANALYSIS ON THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR THE COSPARSE OPTIMIZATION PROBLEM
    Liu, Zisheng
    Zhang, Ting
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3061 - 3077
  • [22] An Improvement of the Alternating Direction Method of Multipliers to Solve the Convex Optimization Problem
    Peng, Jingjing
    Wang, Zhijie
    Yu, Siting
    Tang, Zengao
    MATHEMATICS, 2025, 13 (05)
  • [23] Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems
    Zehui Jia
    Xue Gao
    Xingju Cai
    Deren Han
    Journal of Optimization Theory and Applications, 2021, 188 : 1 - 25
  • [24] Alternating direction method of multipliers with difference of convex functions
    Sun, Tao
    Yin, Penghang
    Cheng, Lizhi
    Jiang, Hao
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (03) : 723 - 744
  • [25] A Bregman-style Partially Symmetric Alternating Direction Method of Multipliers for Nonconvex Multi-block Optimization
    Liu, Peng-jie
    Jian, Jin-bao
    Ma, Guo-dong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (02): : 354 - 380
  • [26] Alternating Direction Method of Multipliers for Nonlinear Image Restoration Problems
    Chen, Chuan
    Ng, Michael K.
    Zhao, Xi-Le
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (01) : 33 - 43
  • [27] A Dual Alternating Direction Method of Multipliers for the Constrained Lasso Problems
    Wang, Qingsong
    PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND SYSTEMS (ICACS 2018), 2018, : 42 - 47
  • [28] A hybrid Bregman alternating direction method of multipliers for the linearly constrained difference-of-convex problems
    Tu, Kai
    Zhang, Haibin
    Gao, Huan
    Feng, Junkai
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (04) : 665 - 693
  • [29] Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems
    Sun, Tao
    Jiang, Hao
    Cheng, Lizhi
    Zhu, Wei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (20) : 5380 - 5391
  • [30] Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization
    Huang, Feihu
    Chen, Songcan
    Huang, Heng
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97