Maximum diameter of 3-and 4-colorable graphs

被引:0
作者
Czabarka, Eva [1 ]
Smith, Stephen J. [1 ]
Szekely, Laszlo [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29212 USA
关键词
diameter; k-colorable; linear programming duality; minimum degree;
D O I
10.1002/jgt.22869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos et al. made conjectures for the maximum diameter of connected graphs without a complete subgraph Kk + 1 ${K}_{k+1}$, which have order n $n$ and minimum degree delta $\delta $. Settling a weaker version of a problem, by strengthening the Kk + 1 ${K}_{k+1}$-free condition to k $k$-colorable, we solve the problem for k = 3 $k=3$ and k = 4 $k=4$ using a unified linear programming duality approach. The case k = 4 $k=4$ is a substantial simplification of the result of Czabarka et al.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 8 条
[1]  
Amar D., 1983, ANN DISCRETE MATH, V17, P7
[2]   GRAPHS OF MAXIMUM DIAMETER [J].
CACCETTA, L ;
SMYTH, WF .
DISCRETE MATHEMATICS, 1992, 102 (02) :121-141
[3]   Diameter of 4-colourable graphs [J].
Czabarka, E. ;
Dankelmann, P. ;
Szekely, L. A. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1082-1089
[4]   Counterexamples to a conjecture of Erdos, Pach, Pollack and Tuza [J].
Czabarka, Eva ;
Singgih, Inne ;
Szekely, Laszlo A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 151 :38-45
[5]   On the maximum diameter of k-colorable graphs [J].
Czabarka, Eva ;
Singgih, Inne ;
Szekely, Laszlo A. .
ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03)
[6]  
ERDOS P, 1989, J COMB THEORY B, V47, P73
[7]  
Goldsmith D.L., 1981, J COMB INF SYST SCI, V6, P315
[8]  
MOON JW, 1965, MICH MATH J, V12, P349