On the space of periodic distributions with multi-dimensional wavelet packet transform

被引:3
作者
Moorthy, R. Subash [1 ]
机构
[1] Amrita Vishwa Vidhyapeetham, Dept Math, Amrita Sch Engn, Coimbatore, Tamil Nadu, India
关键词
Wavelet packet transform; Periodic distribution;
D O I
10.1007/s41478-022-00473-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multi-dimensional wavelet packet transform on the space of infinitely differentiable 2 pi periodic functions is defined and extended to periodic distributions by giving justification to its continuity. Properties of the extended transform under weak* topology are discussed.
引用
收藏
页码:591 / 616
页数:26
相关论文
共 29 条
[1]  
Benedetto JJ, 2002, SIAM J APPL MATH, V62, P1329
[2]  
Chui C.K., 1997, Wavelets: A Mathematical Tool for Signal Analysis
[3]  
Colombo S., 1959, SYMBOLIC CALCULUS DI
[4]  
Daubechies Ingrid., 1992, Ten lectures on wavelets, V61
[5]   WAVELET ANALYSIS ON THE CIRCLE [J].
HOLSCHNEIDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :39-44
[6]   The Fractional Wave Packet Transform [J].
Huang, Y ;
Suter, B .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1998, 9 (04) :399-402
[7]   On Spaces of Periodic Functions with Wavelet Transforms [J].
Kalita, Baby ;
Singh, Sunil Kumar .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (02) :75-86
[8]  
Moorthy R. S., 2017, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V20, P153, DOI 10.23001/pjms2017.20.2.
[9]   Bessel Wavelet Transform and Fractional Bessel Wavelet Transform on Functions of Rapid Descent [J].
Moorthy R.S. ;
Rejini M.T. .
International Journal of Applied and Computational Mathematics, 2022, 8 (3)
[10]   Curvelet transform on tempered distributions [J].
Moorthy, R. Subash ;
Roopkumar, R. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (02)