Model-order reduction for hyperbolic relaxation systems

被引:2
作者
Grundel, Sara [2 ]
Herty, Michael [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math IGPM, Templergraben 55, D-52062 Aachen, Germany
[2] Max Planck Inst Dynam Komplexer Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
关键词
hyperbolic relaxation systems; model order reduction; numerical methods; RUNGE-KUTTA SCHEMES; CONSERVATION-LAWS; APPROXIMATIONS; CONVERGENCE; EQUATIONS;
D O I
10.1515/ijnsns-2021-0192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a novel framework for model-order reduction of hyperbolic differential equations. The approach combines a relaxation formulation of the hyperbolic equations with a discretization using shifted base functions. Model-order reduction techniques are then applied to the resulting system of coupled ordinary differential equations. On computational examples including in particular the case of shock waves we show the validity of the approach and the performance of the reduced system.
引用
收藏
页码:2763 / 2780
页数:18
相关论文
共 34 条
[21]   A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations [J].
Maday, Yvon ;
Patera, Anthony T. ;
Turinici, Gabriel .
JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) :437-446
[22]  
Moon KS, 2001, UNIVERSITEXT, P231
[23]   Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter-dependent shocks [J].
Nair, Nirmal J. ;
Balajewicz, Maciej .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 117 (12) :1234-1262
[24]  
Natalini, 1999, ANAL SYSTEMS CONSERV, V7, P128
[25]   A PROCEDURE FOR REDUCING THE ORDER OF MATHEMATICAL PROCESS MODELS [J].
PALLASKE, U .
CHEMIE INGENIEUR TECHNIK, 1987, 59 (07) :604-605
[26]   Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation [J].
Pareschi, L ;
Russo, G .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) :129-155
[27]  
Pareschi L, 2003, HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, P241
[28]   MODEL REDUCTION FOR TRANSPORT-DOMINATED PROBLEMS VIA ONLINE ADAPTIVE BASES AND ADAPTIVE SAMPLING [J].
Peherstorfer, Benjamin .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05) :A2803-A2836
[29]   Certified reduced basis approximation for parametrized partial differential equations and applications [J].
Quarteroni A. ;
Rozza G. ;
Manzoni A. .
Journal of Mathematics in Industry, 1 (1) :1-49
[30]   THE SHIFTED PROPER ORTHOGONAL DECOMPOSITION: A MODE DECOMPOSITION FOR MULTIPLE TRANSPORT PHENOMENA [J].
Reiss, J. ;
Schulze, P. ;
Sesterhenn, J. ;
Mehrmann, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03) :A1322-A1344