Model-order reduction for hyperbolic relaxation systems

被引:2
作者
Grundel, Sara [2 ]
Herty, Michael [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math IGPM, Templergraben 55, D-52062 Aachen, Germany
[2] Max Planck Inst Dynam Komplexer Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
关键词
hyperbolic relaxation systems; model order reduction; numerical methods; RUNGE-KUTTA SCHEMES; CONSERVATION-LAWS; APPROXIMATIONS; CONVERGENCE; EQUATIONS;
D O I
10.1515/ijnsns-2021-0192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a novel framework for model-order reduction of hyperbolic differential equations. The approach combines a relaxation formulation of the hyperbolic equations with a discretization using shifted base functions. Model-order reduction techniques are then applied to the resulting system of coupled ordinary differential equations. On computational examples including in particular the case of shock waves we show the validity of the approach and the performance of the reduced system.
引用
收藏
页码:2763 / 2780
页数:18
相关论文
共 34 条
[11]   STABLE PARAREAL IN TIME METHOD FOR FIRST- AND SECOND-ORDER HYPERBOLIC SYSTEMS [J].
Dai, Xiaoying ;
Maday, Yvon .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01) :A52-A78
[12]  
Grepl M., 2005, Ph.D. thesis
[13]  
Grundel, MODEL REDUCTION TIME
[14]  
Haasdonk B., 2008, P 12 INT C HYP PROBL
[15]   Reduced basis method for finite volume approximations of parametrized linear evolution equations [J].
Haasdonk, Bernard ;
Ohlberger, Mario .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (02) :277-302
[16]  
Himpe C, 2014, 2014 EUROPEAN CONTROL CONFERENCE (ECC), P2739, DOI 10.1109/ECC.2014.6862188
[17]   THE RELAXATION SCHEMES FOR SYSTEMS OF CONSERVATION-LAWS IN ARBITRARY SPACE DIMENSIONS [J].
JIN, S ;
XIN, ZP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (03) :235-276
[18]   Relaxation scheme for a lattice-Boltzmann-type discrete velocity model and numerical Navier-Stokes limit [J].
Klar, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) :416-432
[19]   Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs [J].
Laakmann, Fabian ;
Petersen, Philipp .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (01)
[20]   The LIP+-stability and error estimates for a relaxation scheme [J].
Liu, HL ;
Wang, JH ;
Warnecke, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) :1154-1170