Model-order reduction for hyperbolic relaxation systems

被引:2
作者
Grundel, Sara [2 ]
Herty, Michael [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math IGPM, Templergraben 55, D-52062 Aachen, Germany
[2] Max Planck Inst Dynam Komplexer Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
关键词
hyperbolic relaxation systems; model order reduction; numerical methods; RUNGE-KUTTA SCHEMES; CONSERVATION-LAWS; APPROXIMATIONS; CONVERGENCE; EQUATIONS;
D O I
10.1515/ijnsns-2021-0192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a novel framework for model-order reduction of hyperbolic differential equations. The approach combines a relaxation formulation of the hyperbolic equations with a discretization using shifted base functions. Model-order reduction techniques are then applied to the resulting system of coupled ordinary differential equations. On computational examples including in particular the case of shock waves we show the validity of the approach and the performance of the reduced system.
引用
收藏
页码:2763 / 2780
页数:18
相关论文
共 34 条
[1]  
[Anonymous], 2001, Contemporary Mathematics, DOI DOI 10.1090/CONM/280/04630
[2]  
[Anonymous], 2005, FUNDAMENTAL PRINCIPL
[3]  
Antoulas AC, 2020, COMPUT SCI ENG SER, P1, DOI 10.1137/1.9781611976083
[4]  
AregbaDriollet D, 1996, Z ANGEW MATH MECH, V76, P377
[5]  
Benner P., 2017, MODEL REDUCTION APPR, V15, DOI [10.1137/1.9781611974829, DOI 10.1137/1.9781611974829]
[6]   Hyperbolic limit of the Jin-Xin relaxation model [J].
Bianchini, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (05) :688-753
[7]   IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS AND KINETIC EQUATIONS IN THE DIFFUSION LIMIT [J].
Boscarino, S. ;
Pareschi, L. ;
Russo, G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01) :A22-A51
[8]  
Cagniart N., 2018, CONTRIBUTIONS PARTIA, DOI [10.1007/978, DOI 10.1007/978, 10.1007/978-3-319-78325-310, DOI 10.1007/978-3-319-78325-3_10]
[9]   Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms [J].
Chalabi, A .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :955-970
[10]   On nonsingularity of circulant matrices [J].
Chen, Zhangchi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 612 :162-176