Three positive nonconstant radial solutions of nonlinear Neumann problems with indefinite weight

被引:0
作者
Chen, T. [1 ]
Ma, R. [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Positive nonconstant solutions; Neumann boundary conditions; indefinite weight; bifurcation; ELLIPTIC EIGENVALUE PROBLEM; GLOBAL BIFURCATION; EXISTENCE; SYSTEMS;
D O I
10.1080/00036811.2021.1979215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the global behavior of components of positive nonconstant radial solutions for the Neumann problem with indefinite weight {-Delta u = lambda h(X)f(u), in B, partial derivative(nu)u = 0, on partial derivative B, where lambda > 0 is a parameter, B subset of R-N(N >= 1) is the unit open ball, f is an element of C([0, infinity), [0, infinity)) and h is an element of C((B) over bar) satisfying integral(B) h(x) dx < 0 is the sign-changing function. We determine the intervals of lambda in which the above problem has one, two or three positive nonconstant radial solutions by using the directions of a bifurcation.
引用
收藏
页码:1132 / 1143
页数:12
相关论文
共 22 条