Postoperative Relapse Prediction in Patients With Ewing Sarcoma Using Computed Tomography-Based Radiomics Models Covering Tumor Per Se and Peritumoral Signatures

被引:2
作者
Liu, Ying [1 ]
Yin, Ping [1 ]
Cui, Jingjing [2 ]
Sun, Chao [1 ]
Chen, Lei [1 ]
Hong, Nan [1 ,3 ]
机构
[1] Peking Univ, Peoples Hosp, 11 Xizhimen Nandajie, Beijing 100044, Peoples R China
[2] United Imaging Intelligence Beijing Co Ltd, Beijing, Peoples R China
[3] Peking Univ, Dept Radiol, Peoples Hosp, 11 Xizhimen Nandajie, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Ewing sarcoma; radiomics; peritumoral; recurrence; FEATURES; RECURRENCE; CT; SURVIVAL; NOMOGRAM; CANCER; RISK;
D O I
10.1097/RCT.0000000000001475
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectiveWe aimed to develop and validate a computed tomography (CT)-based radiomics model for early relapse prediction in patients with Ewing sarcoma (ES).MethodsWe recruited 104 patients in this study. Tumor areas and areas with a tumor expansion of 3 mm were used as regions of interest for radiomics analysis. Six different models were constructed: Pre-CT, CT enhancement (CTE), Pre-CT+3 mm, CTE+3 mm, Pre-CT and CTE combined (ComB), and Pre-CT+3 mm and CTE+3 mm combined (ComB+3 mm). All 3 classifiers used a grid search with 5-fold cross-validation to identify their optimal parameters, followed by repeat 5-fold cross-validation to evaluate the model performance based on these parameters. The average performance of the 5-fold cross-validation and the best one-fold performance of each model were evaluated. The AUC (area under the receiver operating characteristic curve) and accuracy were calculated to evaluate the models.ResultsThe 6 radiomics models performed well in predicting relapse in patients with ES using the 3 classifiers; the ComB and ComB+3 mm models performed better than the other models (AUC-best: 0.820-0.922/0.823-0.833 and 0.799-0.873/0.759-0.880 in the training and validation cohorts, respectively). Although the Pre-CT+3 mm, CTE+3 mm, and ComB+3 mm models covering tumor per se and peritumoral CT features preoperatively forecasted ES relapse, the model was not significantly improved.ConclusionsThe radiomics model performed well for early recurrence prediction in patients with ES, and the ComB and ComB+3 mm models may be superior to the other models.
引用
收藏
页码:766 / 773
页数:8
相关论文
共 33 条
[1]   Risk analysis factors for local recurrence in Ewing's sarcoma WHEN SHOULD ADJUVANT RADIOTHERAPY BE ADMINISTERED? [J].
Albergo, J. I. ;
Gaston, C. L. L. ;
Parry, M. C. ;
Laitinen, M. K. ;
Jeys, L. M. ;
Tillman, R. M. ;
Abudu, A. T. ;
Grimer, R. J. .
BONE & JOINT JOURNAL, 2018, 100B (02) :247-255
[2]   Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal [J].
Asl, Babak Mohammadzadeh ;
Setarehdan, Seyed Kamaledin ;
Mohebbi, Maryam .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2008, 44 (01) :51-64
[3]   Prognostic value of FDG-PET indices for the assessment of histological response to neoadjuvant chemotherapy and outcome in pediatric patients with Ewing sarcoma and osteosarcoma [J].
Bailly, Clement ;
Leforestier, Rodolphe ;
Campion, Loic ;
Thebaud, Estelle ;
Moreau, Anne ;
Kraeber-Bodere, Francoise ;
Carlier, Thomas ;
Bodet-Milin, Caroline .
PLOS ONE, 2017, 12 (08)
[4]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[5]   NCCN Guidelines® Insights Bone Cancer, Version 2.2017 Featured Updates to the NCCN Guidelines [J].
Biermann, J. Sybil ;
Chow, Warren ;
Reed, Damon R. ;
Lucas, David ;
Adkins, Douglas R. ;
Agulnik, Mark ;
Benjamin, Robert S. ;
Brigman, Brian ;
Budd, G. Thomas ;
Curry, William T. ;
Didwania, Aarati ;
Fabbri, Nicola ;
Hornicek, Francis J. ;
Kuechle, Joseph B. ;
Lindskog, Dieter ;
Mayerson, Joel ;
McGarry, Sean V. ;
Million, Lynn ;
Morris, Carol D. ;
Movva, Sujana ;
O'Donnell, Richard J. ;
Randall, R. Lor ;
Rose, Peter ;
Santana, Victor M. ;
Satcher, Robert L. ;
Schwartz, Herbert ;
Siegel, Herrick J. ;
Thornton, Katherine ;
Villalobos, Victor ;
Bergman, Mary Anne ;
Scavone, Jillian L. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2017, 15 (02) :155-167
[6]   Individual risk evaluation for local recurrence and distant metastasis in Ewing sarcoma: A multistate model A multistate model for Ewing sarcoma [J].
Bosma, S. E. ;
Rueten-Budde, A. J. ;
Lancia, C. ;
Ranft, A. ;
Dirksen, U. ;
Krol, A. D. ;
Gelderblom, H. ;
van de Sande, M. A. J. ;
Dijkstra, P. D. S. ;
Fiocco, M. .
PEDIATRIC BLOOD & CANCER, 2019, 66 (11)
[7]   Prognostic factors for survival in Ewing sarcoma: A systematic review [J].
Bosma, S. E. ;
Ayu, O. ;
Fiocco, M. ;
Gelderblom, H. ;
Dijkstra, P. D. S. .
SURGICAL ONCOLOGY-OXFORD, 2018, 27 (04) :603-610
[8]   A CT-based radiomics nomogram for predicting early recurrence in patients with high-grade serous ovarian cancer [J].
Chen, Hui-zhu ;
Wang, Xin-rong ;
Zhao, Fu-min ;
Chen, Xi-jian ;
Li, Xue-sheng ;
Ning, Gang ;
Guo, Ying-kun .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 145
[9]   CT Radiomics Signature of Tumor and Peritumoral Lung Parenchyma to Predict Nonsmall Cell Lung Cancer Postsurgical Recurrence Risk [J].
D'Antonoli, Tugba Akinci ;
Farchione, Alessandra ;
Lenkowicz, Jacopo ;
Chiappetta, Marco ;
Cicchetti, Giuseppe ;
Martino, Antonella ;
Ottavianelli, Alessandra ;
Manfredi, Riccardo ;
Margaritora, Stefano ;
Bonomo, Lorenzo ;
Valentini, Vincenzo ;
Larici, Anna Rita .
ACADEMIC RADIOLOGY, 2020, 27 (04) :497-507
[10]   Differentiation of Pelvic Osteosarcoma and Ewing Sarcoma Using Radiomic Analysis Based on T2-Weighted Images and Contrast-Enhanced T1-Weighted Images [J].
Dai, Yi ;
Yin, Ping ;
Mao, Ning ;
Sun, Chao ;
Wu, Jiangfen ;
Cheng, Guanxun ;
Hong, Nan .
BIOMED RESEARCH INTERNATIONAL, 2020, 2020